Menu Close

find-0-pi-4-dx-2cosx-cos-2x-




Question Number 37784 by prof Abdo imad last updated on 17/Jun/18
find  ∫_0 ^(π/4)      (dx/(2cosx +cos(2x)))
find0π4dx2cosx+cos(2x)
Commented by math khazana by abdo last updated on 18/Jun/18
 I = ∫_0 ^(π/4)      (dx/(2cosx +2 cos^2 x−1))  =∫_0 ^(π/4)     (dx/(2cos^2 x +2cosx −1)) let decompose  F(x)= (1/(2x^2  +2x −1))  Δ^′  =1+2=3 ⇒x_1 =((−1+(√3))/2) and x_2 =((−1−(√3))/2) ⇒  F(x)= (1/(2(x−x_1 )(x−x_2 ))) =(a/(x−x_1 )) +(b/(x−x_2 ))  a= (1/(2(x_1  −x_2 ))) =(1/(2.(√3)))  b= (1/(2(x_2  −x_1 ))) = (1/(2(−(√3)))) =−(1/(2(√3))) ⇒  F(x)= (1/(2(√3))){  (1/(x −((−1+(√3))/2)))  −(1/(x−((−1−(√3))/2)))}  = (1/(2(√3))){   (2/(2x+1−(√3))) − (2/(2x +1+(√3)))} ⇒  I = (1/( (√3))) ∫_0 ^(π/4)       (dx/(2cosx +1−(√3))) −(1/( (√3)))∫_0 ^(π/4)    (dx/(2cosx +1+(√3)))  =H −K  changement tan((x/2))=t give  H = (1/( (√3))) ∫_0 ^((√2)−1)     (1/(2((1−t^2 )/(1+t^2 )) +1−(√3)))  ((2dt)/(1+t^2 ))  = (2/( (√3))) ∫_0 ^((√2)−1)         (dt/(2−2t^2  +1−(√3) +(1−(√3))t^2 ))  =(2/( (√3))) ∫_0 ^((√2)−1)       (dt/(3−(√3)  −(1+(√3))t^2 ))  =(2/( (√3)(3−(√3)))) ∫_0 ^((√2)−1)    (dt/(1−((√((1+(√3))/(3−(√3))))t)^2 ))  =_((√((1+(√3))/(3−(√3))))t=u)    (2/( (√3)(3−(√3)))) ∫_0 ^(((√2)−1)(√((1+(√3))/(3−(√3)))))     (1/(1−u^2 )) (√((3−(√3))/(1+(√3))))du  =  (2/( (√3)(√((3−(√(3)(1+(√(3))))))))) ∫_0 ^(((√(2−1)))(√((1+(√3))/(3−(√3)))))     (du/(1−u^2 ))  = (1/( (√3)(√((3−(√3))(1+(√3))))))[ln∣ ((1+u)/(1−u))∣]_0 ^(((√2)−1)(√((1+(√3))/(3−(√3)))))   = ((√3)/(3(√((3−(√3))(1+(√3))))))ln(   ((1+λ)/(1−λ))) with  λ= ((√2)−1)(√((1+(√3))/(3−(√3))))  we follow the same?method to calculate K....
I=0π4dx2cosx+2cos2x1=0π4dx2cos2x+2cosx1letdecomposeF(x)=12x2+2x1Δ=1+2=3x1=1+32andx2=132F(x)=12(xx1)(xx2)=axx1+bxx2a=12(x1x2)=12.3b=12(x2x1)=12(3)=123F(x)=123{1x1+321x132}=123{22x+1322x+1+3}I=130π4dx2cosx+13130π4dx2cosx+1+3=HKchangementtan(x2)=tgiveH=13021121t21+t2+132dt1+t2=23021dt22t2+13+(13)t2=23021dt33(1+3)t2=23(33)021dt1(1+333t)2=1+333t=u23(33)0(21)1+33311u2331+3du=23(33)(1+3)0(21)1+333du1u2=13(33)(1+3)[ln1+u1u]0(21)1+333=33(33)(1+3)ln(1+λ1λ)withλ=(21)1+333wefollowthesame?methodtocalculateK.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18
∫_0 ^(Π/4) (dx/(2cosx+2cos^2 x−1))  =(1/2)∫_0 ^(Π/4) (dx/(cos^2 x+cosx−(1/2)))  a^2 +a−(1/2)  a^2 +2.a.(1/2)+(1/4)−(1/4)−(1/2)  (a+(1/2))^2 −(3/4)  (a+(1/2)+(((√3) )/2))(a+(1/2)−(((√3) )/2))  (a+((1+(√3) )/2))(a+((1−(√3) )/2))  (a+((1+(√3) )/2))−(a+((1−(√3) )/2))  (√3)   =(1/(2(√3)))∫_0 ^(Π/4) (((√3) )/((cosx+((1+(√3) )/2))(cosx+((1−(√3) )/2))))dx  =(1/(2(√3) ))∫_0 ^(Π/4) (dx/(cosx+((1−(√3) )/2)))−(1/(2(√3)))∫_0 ^(Π/4) (dx/(cosx+((1−(√3) )/2)))  =(1/(2(√3) )){∫_0 ^(Π/4) (dx/(a+cosx))−∫_0 ^(Π/4) (dx/(b+cosx))}  now it can be solved but lenthy...method...∫  ∫(dx/(a+cosx))  ∫(dx/(a+((1−tan^2 (x/2))/(1+tan^2 (x/2)))))  ∫((sec^2 (x/2))/(a+atan^2 (x/2)+1−tan^2 (x/2)))dx  ∫((sec^2 (x/2))/((a+1)+tan^2 (x/2)(a−1)))dx  (1/(a−1))∫((sec^2 (x/2))/(((a+1)/(a−1))+tan^2 (x/2)))dx  t=tan(x/2)   dt=sec^2 (x/2)×(1/2)dx  (2/(a−1))∫(dt/({(√(((a+1)/(a−1)) )) }^2 +t^2 ))  (2/(a−1))×(((√(a−1))  )/( (√(a+1)))) ×tan^(−1) {(t/(((√(a−1)) )/( (√(a+1)))))}...like this way
0Π4dx2cosx+2cos2x1=120Π4dxcos2x+cosx12a2+a12a2+2.a.12+141412(a+12)234(a+12+32)(a+1232)(a+1+32)(a+132)(a+1+32)(a+132)3=1230Π43(cosx+1+32)(cosx+132)dx=1230Π4dxcosx+1321230Π4dxcosx+132=123{0Π4dxa+cosx0Π4dxb+cosx}nowitcanbesolvedbutlenthymethoddxa+cosxdxa+1tan2x21+tan2x2sec2x2a+atan2x2+1tan2x2dxsec2x2(a+1)+tan2x2(a1)dx1a1sec2x2a+1a1+tan2x2dxt=tanx2dt=sec2x2×12dx2a1dt{a+1a1}2+t22a1×a1a+1×tan1{ta1a+1}likethisway
Answered by MJS last updated on 17/Jun/18
Weierstrass  ∫(dx/(2cos x +cos 2x))=            [t=tan (x/2) → dx=((2dt)/(1+t^2 ))]  =−2∫((t^2 +1)/(t^4 +6t^2 −3))dt=  =−2∫((t^2 +1)/((t−(√(−3+2(√3))))(t+(√(−3+2(√3))))(t^2 +3+2(√3))))dt=  =−2(∫(A/(t−(√(−3+2(√3)))))dt+∫(B/(t+(√(−3+2(√3)))))dt+∫(C/(t^2 +3+2(√3)))dt)=  =−((√(2(√3)))/6)∫(dt/(t−(√(−3+2(√3)))))+((√(2(√3)))/6)∫(dt/(t+(√(−3+2(√3)))))−((3+(√3))/3)∫(dt/(t^2 +3+2(√3))))=            [∫(dx/(x±a))=ln∣x±a∣; ∫(dx/(x^2 +a))=(1/( (√a)))arctan (x/( (√a)))]  =((√(2(√3)))/6)(ln∣t+(√(−3+2(√3)))∣−ln∣t−(√(−3+2(√3)))∣)−(1+((√3)/3))(1/( (√(3+2(√3)))))arctan (t/( (√(3+2(√3)))))=  =((√(2(√3)))/6)ln∣((t+(√(−3+2(√3))))/(t−(√(−3+2(√3)))))∣ −((√(2(√3)))/3)arctan (((√(2(√3)))(3−(√3))t)/6)=  =((√(2(√3)))/6)(ln∣((t+(√(−3+2(√3))))/(t−(√(−3+2(√3)))))∣ −2arctan (((√(2(√3)))(3−(√3))t)/6))=  =((√(2(√3)))/6)(ln∣((tan (x/2)+(√(−3+2(√3))))/(tan (x/2)−(√(−3+2(√3)))))∣ −2arctan (((√(2(√3)))(3−(√3))tan (x/2))/6))+C
Weierstrassdx2cosx+cos2x=[t=tanx2dx=2dt1+t2]=2t2+1t4+6t23dt==2t2+1(t3+23)(t+3+23)(t2+3+23)dt==2(At3+23dt+Bt+3+23dt+Ct2+3+23dt)==236dtt3+23+236dtt+3+233+33dtt2+3+23)=[dxx±a=lnx±a;dxx2+a=1aarctanxa]=236(lnt+3+23lnt3+23)(1+33)13+23arctant3+23==236lnt+3+23t3+23233arctan23(33)t6==236(lnt+3+23t3+232arctan23(33)t6)==236(lntanx2+3+23tanx23+232arctan23(33)tanx26)+C
Commented by math khazana by abdo last updated on 18/Jun/18
good hard work
goodhardwork

Leave a Reply

Your email address will not be published. Required fields are marked *