Question Number 37784 by prof Abdo imad last updated on 17/Jun/18

Commented by math khazana by abdo last updated on 18/Jun/18
![I = ∫_0 ^(π/4) (dx/(2cosx +2 cos^2 x−1)) =∫_0 ^(π/4) (dx/(2cos^2 x +2cosx −1)) let decompose F(x)= (1/(2x^2 +2x −1)) Δ^′ =1+2=3 ⇒x_1 =((−1+(√3))/2) and x_2 =((−1−(√3))/2) ⇒ F(x)= (1/(2(x−x_1 )(x−x_2 ))) =(a/(x−x_1 )) +(b/(x−x_2 )) a= (1/(2(x_1 −x_2 ))) =(1/(2.(√3))) b= (1/(2(x_2 −x_1 ))) = (1/(2(−(√3)))) =−(1/(2(√3))) ⇒ F(x)= (1/(2(√3))){ (1/(x −((−1+(√3))/2))) −(1/(x−((−1−(√3))/2)))} = (1/(2(√3))){ (2/(2x+1−(√3))) − (2/(2x +1+(√3)))} ⇒ I = (1/( (√3))) ∫_0 ^(π/4) (dx/(2cosx +1−(√3))) −(1/( (√3)))∫_0 ^(π/4) (dx/(2cosx +1+(√3))) =H −K changement tan((x/2))=t give H = (1/( (√3))) ∫_0 ^((√2)−1) (1/(2((1−t^2 )/(1+t^2 )) +1−(√3))) ((2dt)/(1+t^2 )) = (2/( (√3))) ∫_0 ^((√2)−1) (dt/(2−2t^2 +1−(√3) +(1−(√3))t^2 )) =(2/( (√3))) ∫_0 ^((√2)−1) (dt/(3−(√3) −(1+(√3))t^2 )) =(2/( (√3)(3−(√3)))) ∫_0 ^((√2)−1) (dt/(1−((√((1+(√3))/(3−(√3))))t)^2 )) =_((√((1+(√3))/(3−(√3))))t=u) (2/( (√3)(3−(√3)))) ∫_0 ^(((√2)−1)(√((1+(√3))/(3−(√3))))) (1/(1−u^2 )) (√((3−(√3))/(1+(√3))))du = (2/( (√3)(√((3−(√(3)(1+(√(3))))))))) ∫_0 ^(((√(2−1)))(√((1+(√3))/(3−(√3))))) (du/(1−u^2 )) = (1/( (√3)(√((3−(√3))(1+(√3))))))[ln∣ ((1+u)/(1−u))∣]_0 ^(((√2)−1)(√((1+(√3))/(3−(√3))))) = ((√3)/(3(√((3−(√3))(1+(√3))))))ln( ((1+λ)/(1−λ))) with λ= ((√2)−1)(√((1+(√3))/(3−(√3)))) we follow the same?method to calculate K....](https://www.tinkutara.com/question/Q37835.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18

Answered by MJS last updated on 17/Jun/18
![Weierstrass ∫(dx/(2cos x +cos 2x))= [t=tan (x/2) → dx=((2dt)/(1+t^2 ))] =−2∫((t^2 +1)/(t^4 +6t^2 −3))dt= =−2∫((t^2 +1)/((t−(√(−3+2(√3))))(t+(√(−3+2(√3))))(t^2 +3+2(√3))))dt= =−2(∫(A/(t−(√(−3+2(√3)))))dt+∫(B/(t+(√(−3+2(√3)))))dt+∫(C/(t^2 +3+2(√3)))dt)= =−((√(2(√3)))/6)∫(dt/(t−(√(−3+2(√3)))))+((√(2(√3)))/6)∫(dt/(t+(√(−3+2(√3)))))−((3+(√3))/3)∫(dt/(t^2 +3+2(√3))))= [∫(dx/(x±a))=ln∣x±a∣; ∫(dx/(x^2 +a))=(1/( (√a)))arctan (x/( (√a)))] =((√(2(√3)))/6)(ln∣t+(√(−3+2(√3)))∣−ln∣t−(√(−3+2(√3)))∣)−(1+((√3)/3))(1/( (√(3+2(√3)))))arctan (t/( (√(3+2(√3)))))= =((√(2(√3)))/6)ln∣((t+(√(−3+2(√3))))/(t−(√(−3+2(√3)))))∣ −((√(2(√3)))/3)arctan (((√(2(√3)))(3−(√3))t)/6)= =((√(2(√3)))/6)(ln∣((t+(√(−3+2(√3))))/(t−(√(−3+2(√3)))))∣ −2arctan (((√(2(√3)))(3−(√3))t)/6))= =((√(2(√3)))/6)(ln∣((tan (x/2)+(√(−3+2(√3))))/(tan (x/2)−(√(−3+2(√3)))))∣ −2arctan (((√(2(√3)))(3−(√3))tan (x/2))/6))+C](https://www.tinkutara.com/question/Q37825.png)
Commented by math khazana by abdo last updated on 18/Jun/18
