Menu Close

find-0-pi-4-ln-1-tanx-dx-




Question Number 29451 by prof Abdo imad last updated on 08/Feb/18
find  ∫_0 ^(π/4)   ln(1+tanx)dx .
find0π4ln(1+tanx)dx.
Commented by prof Abdo imad last updated on 28/Feb/18
let introduce tbe function F(t)=∫_0 ^(π/4) ln(1+ttanx)dx  F^′ (t)= ∫_0 ^(π/4)     ((tanx)/(1+ttanx))dx   (let take t≥o)  (dF/dt)(t)=(1/t)∫_0 ^(π/4)   ((t tanx +1 −1)/(1+t tanx))dx  =(π/(4t)) −(1/t) ∫_0 ^(π/4)     (dx/(1+t tanx)) but  ∫_0 ^(π/4)    (dx/(1 +t tanx))dx the ch.tanx=u give  ∫_0 ^(π/4)    (dx/(1+t tanx)) = ∫_0 ^1     (1/(1+tu)) (du/(1+u^2 ))  = ∫_0 ^1      (du/((1+u^2 )(1+tu))) decomposition  F(u)= (1/((1+u^2 )(1+tu))) =  (1/(t(u+(1/t))(1+u^2 ))) ⇒  tF(u)= (a/(u +(1/t))) +   ((bu +c)/(1+u^2 ))=  (t/((1+u^2 )(1+tu)))  a=lim_(u→−(1/t) ) (u+(1/t))tF(u)= (1/(1+(1/t^2 ))) =  (t^(2 ) /(1+t^2 ))  lim_(u→∞) utF(u)=0= a +b ⇒b=−a =−(t^2 /(1+t^2 ))  tF(u)= (t^2 /((1+t^2 )(u+(1/t)))) +((−(t^2 /(1+t^2 )) u+c)/(1+u^2 ))    be continued....
letintroducetbefunctionF(t)=0π4ln(1+ttanx)dxF(t)=0π4tanx1+ttanxdx(lettaketo)dFdt(t)=1t0π4ttanx+111+ttanxdx=π4t1t0π4dx1+ttanxbut0π4dx1+ttanxdxthech.tanx=ugive0π4dx1+ttanx=0111+tudu1+u2=01du(1+u2)(1+tu)decompositionF(u)=1(1+u2)(1+tu)=1t(u+1t)(1+u2)tF(u)=au+1t+bu+c1+u2=t(1+u2)(1+tu)a=limu1t(u+1t)tF(u)=11+1t2=t21+t2limuutF(u)=0=a+bb=a=t21+t2tF(u)=t2(1+t2)(u+1t)+t21+t2u+c1+u2becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *