find-0-pi-4-ln-1-tanx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 29451 by prof Abdo imad last updated on 08/Feb/18 find∫0π4ln(1+tanx)dx. Commented by prof Abdo imad last updated on 28/Feb/18 letintroducetbefunctionF(t)=∫0π4ln(1+ttanx)dxF′(t)=∫0π4tanx1+ttanxdx(lettaket⩾o)dFdt(t)=1t∫0π4ttanx+1−11+ttanxdx=π4t−1t∫0π4dx1+ttanxbut∫0π4dx1+ttanxdxthech.tanx=ugive∫0π4dx1+ttanx=∫0111+tudu1+u2=∫01du(1+u2)(1+tu)decompositionF(u)=1(1+u2)(1+tu)=1t(u+1t)(1+u2)⇒tF(u)=au+1t+bu+c1+u2=t(1+u2)(1+tu)a=limu→−1t(u+1t)tF(u)=11+1t2=t21+t2limu→∞utF(u)=0=a+b⇒b=−a=−t21+t2tF(u)=t2(1+t2)(u+1t)+−t21+t2u+c1+u2becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-data-1-3-3-5-5-5-5-8-9-10-10-12-find-the-value-of-quartile-1-st-Next Next post: find-lim-n-k-1-n-1-k-n-1-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.