Menu Close

find-0-pi-4-x-2-1-cos-x-dx-




Question Number 62001 by maxmathsup by imad last updated on 13/Jun/19
find  ∫_0 ^(π/4)    (x^2 /(1−cos(x)))dx
find0π4x21cos(x)dx
Commented by maxmathsup by imad last updated on 14/Jun/19
approximate value  let  I =∫_0 ^(π/4)   (x^2 /(1−cosx))dx   we have   cosx =Σ_(n=0) ^∞  (((−1)^n x^(2n) )/((2n)!)) (with radius R=∞) ⇒cosx =1−(x^2 /2) +(x^4 /(4!))−... ⇒1−(x^2 /2) ≤cosx≤1−(x^2 /2) +(x^4 /(4!)) ⇒  −1+(x^2 /2)−(x^4 /(4!)) ≤−cosx ≤−1+(x^2 /2) ⇒(x^2 /2) −(x^4 /(4!)) ≤ 1−cosx ≤(x^2 /2) ⇒   (2/x^2 ) ≤(1/(1−cosx)) ≤ (1/((x^2 /2)−(x^4 /(4!)))) ⇒2 ≤ (x^2 /(1−cosx)) ≤  (1/((1/2)−(x^2 /(4!)))) ⇒  ∫_0 ^(π/4)   2dx ≤ ∫_0 ^(π/4)   (x^2 /(1−cosx))dx ≤ ∫_0 ^(π/4)     (dx/((1/2)−(x^2 /(4!)))) ⇒(π/2) ≤ I ≤2.4! ∫_0 ^(π/4)    (dx/(4!−2x^2 ))  ∫_0 ^(π/4)   (dx/(4!−2x^2 )) =∫_0 ^(π/4)   (dx/(24−2x^2 )) =(1/2) ∫_0 ^(π/4)   (dx/(12−x^2 )) =(1/2) ∫_0 ^(π/4)   (dx/((2(√3)−x)(2(√3)+x)))  =(1/2) (1/(4(√3)))∫_0 ^(π/4)  { (1/(2(√3)−x)) +(1/(2(√3) +x))}dx = (1/(8(√3)))[ln∣((2(√3)+x)/(2(√3)−x))∣]_0 ^(π/4)   =(1/(8(√3))) ln∣((2(√3)+(π/4))/(2(√3)−(π/4)))∣ =(1/(8(√3)))ln∣((8(√3)+π)/(8(√3)−π))∣ ⇒ (π/2) ≤ I ≤ ((2.24)/(8(√3)))ln∣((8(√3)+π)/(8(√3)−π))∣ ⇒  (π/2) ≤ I≤  (6/( (√3)))ln∣((8(√3)+π)/(8(√3)−π))∣  let v_0 =(π/4) +(√3)ln(((8(√3)+π)/(8(√3)−π)))  v_0 is a approximate value for this integral .
approximatevalueletI=0π4x21cosxdxwehavecosx=n=0(1)nx2n(2n)!(withradiusR=)cosx=1x22+x44!1x22cosx1x22+x44!1+x22x44!cosx1+x22x22x44!1cosxx222x211cosx1x22x44!2x21cosx112x24!0π42dx0π4x21cosxdx0π4dx12x24!π2I2.4!0π4dx4!2x20π4dx4!2x2=0π4dx242x2=120π4dx12x2=120π4dx(23x)(23+x)=121430π4{123x+123+x}dx=183[ln23+x23x]0π4=183ln23+π423π4=183ln83+π83ππ2I2.2483ln83+π83ππ2I63ln83+π83πletv0=π4+3ln(83+π83π)v0isaapproximatevalueforthisintegral.

Leave a Reply

Your email address will not be published. Required fields are marked *