Menu Close

find-0-pi-dx-2-cosx-




Question Number 29439 by prof Abdo imad last updated on 08/Feb/18
find ∫_0 ^π  (dx/(2+cosx)) .
find0πdx2+cosx.
Answered by sma3l2996 last updated on 09/Feb/18
t=tanx/2⇒dx=((2dt)/(1+t^2 ))  ∫_0 ^π (dx/(2+cosx))=∫_0 ^(+∞) (1/(2+((1−t^2 )/(1+t^2 ))))×((2dt)/(1+t^2 ))  =2∫_0 ^(+∞) (dt/(3+t^2 ))=(2/3)∫_0 ^(+∞) (dt/(1+((t/( (√3))))^2 ))  (√3)u=t⇒dt=(√3)du  ∫_0 ^(π/2) (dx/(2+cosx))=((2(√3))/3)∫_0 ^(+∞) (du/(1+u^2 ))=((2(√3))/3)[arctanu]_0 ^(+∞)   =((2(√3))/3)×(π/2)=(((√3)π)/3)
t=tanx/2dx=2dt1+t20πdx2+cosx=0+12+1t21+t2×2dt1+t2=20+dt3+t2=230+dt1+(t3)23u=tdt=3du0π/2dx2+cosx=2330+du1+u2=233[arctanu]0+=233×π2=3π3

Leave a Reply

Your email address will not be published. Required fields are marked *