Menu Close

find-0-pi-dx-a-bcosx-2-with-a-gt-b-gt-0-then-give-the-value-of-0-pi-dx-2-cosx-2-




Question Number 31096 by abdo imad last updated on 02/Mar/18
find  ∫_0 ^π    (dx/((a+bcosx)^2 )) with a>b>0 then give the  value of ∫_0 ^π     (dx/((2+cosx)^2 ))
find0πdx(a+bcosx)2witha>b>0thengivethevalueof0πdx(2+cosx)2
Commented by abdo imad last updated on 04/Mar/18
let introduce the function f(a)=∫_0 ^π    (dx/(a+bcosx)) we have  f^′ (a)=−∫_0 ^π    (dx/((a+bcosx)^2 )) ⇒∫_0 ^π   (dx/((a+bcosx)^2 ))=−f^′ (a) let  calculate f(a) ch.tan((x/2))=t give  f(a)= ∫_0 ^∞   (1/(a+b ((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫_0 ^∞     ((2dt)/(a(1+t^2 )+b(1−t^2 )))  =∫_0 ^∞      ((2dt)/(a+b +(a−b)t^2 ))=∫_0 ^∞    ((2dt)/((a+b)(1+((a−b)/(a+b))t^2 ))) then  we use the ch.(√((a−b)/(a+b))) t=u⇒  f(a)= (1/(a+b)) ∫_0 ^∞    (2/((1+u^2 ))) (√((a+b)/(a−b))) du  = (2/( (√(a^2  −b^2 )))) ∫_0 ^∞   (du/(1+u^2 ))= (π/2) (2/( (√(a^2 −b^2 )))) = (π/( (√(a^2  −b^2 ))))  f(a)=π(a^2  −b^2 )^(−(1/2))  ⇒f^′ (a)=((−π)/2)(2a)(a^2  −b^2 )^(−(3/2))   =((−πa)/((a^2 −b^2 )(√(a^2  −b^2 )))) ⇒∫_0 ^π     (dx/((a+bcosx)^2 ))= ((πa)/((a^2  −b^2 )(√(a^2  −b^2 ))))  2) let take a=2 and b=1 ⇒  ∫_0 ^π    (dx/((2+cosx)^2 ))=  ((2π)/((2^2  −1^2 )(√(2^2  −1^2 )))) = ((2π)/(3(√3))) .
letintroducethefunctionf(a)=0πdxa+bcosxwehavef(a)=0πdx(a+bcosx)20πdx(a+bcosx)2=f(a)letcalculatef(a)ch.tan(x2)=tgivef(a)=01a+b1t21+t22dt1+t2=02dta(1+t2)+b(1t2)=02dta+b+(ab)t2=02dt(a+b)(1+aba+bt2)thenweusethech.aba+bt=uf(a)=1a+b02(1+u2)a+babdu=2a2b20du1+u2=π22a2b2=πa2b2f(a)=π(a2b2)12f(a)=π2(2a)(a2b2)32=πa(a2b2)a2b20πdx(a+bcosx)2=πa(a2b2)a2b22)lettakea=2andb=10πdx(2+cosx)2=2π(2212)2212=2π33.

Leave a Reply

Your email address will not be published. Required fields are marked *