Menu Close

find-0-pi-ln-2-cost-dt-and-0-pi-ln-2-cost-dt-




Question Number 38899 by math khazana by abdo last updated on 01/Jul/18
find ∫_0 ^π ln(2+cost)dt and ∫_0 ^π ln(2−cost)dt
find0πln(2+cost)dtand0πln(2cost)dt
Commented by maxmathsup by imad last updated on 11/Jul/18
let I = ∫_0 ^π  ln(2+cost)dt  I =πln(2)  +∫_0 ^π ln(1 +(1/2) cost)t   let ntroduce the parametric function  f(x) = ∫_0 ^π ln(1+xcost)dt we have  I =f((1/2))  (we take ∣x∣<1)  f^′ (x) = ∫_0 ^π   ((cost)/(1+x cost))dt = (1/x) ∫_0 ^π    ((1+xcost −1)/(1+x cost))dt  =(π/x) −(1/x) ∫_0 ^π    (dt/(1 +x cost)) dt but changement tan((t/2))=u give  ∫_0 ^π    (dt/(1+x cost)) = ∫_0 ^∞     (1/(1+x((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^∞        ((2du)/(1+u^2  +x(1−u^2 ))) = ∫_0 ^∞      ((2du)/(1+x +(1−x)u^2 ))   =(2/(1+x)) ∫_0 ^∞      (du/(1+((1−x)/(1+x))u^2 )) =_((√(((1−x)/(1+x))u))=α)    (2/(1+x)) ∫_0 ^∞       (1/(1+α^2 )) (√((1+x)/(1−x)))dα  = (2/( (√(1−x^2 )))) (π/2)  = (π/( (√(1−x^2 )))) ⇒ f^′ (x) = (π/x)  −(1/x) (π/( (√(1−x^2 )))) ⇒  f(x) = πln∣x∣  − π  ∫_     (dx/(x(√(1−x^2 )))) +c  ∫     (dx/(x(√(1−x^2 ))))  =_(x=sinθ)    ∫      ((cosθ dθ)/(sinθ cosθ)) = ∫    (dθ/(sinθ)) =_(tan((θ/2))=u)   ∫   (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 ))  =∫  (du/u) =ln∣u∣ =ln∣tan((θ/2))∣ = ln∣ tan( ((arcinx)/(2 )))∣ ⇒  f(x) =π ln∣x∣ −π ln∣tan(((arcsinx)/2))∣ +c    we have f(1) =c = ∫_0 ^π ln(1+cosx)dx =∫_0 ^π ln(2cos^2 ((x/2)))dx  =πln(2)  +2 ∫_0 ^π  ln( cos((x/2)))dx  =_((x/2)=t)    πln(2) +2 ∫_0 ^(π/2)  ln(cost) (2dt)=πln(2) +4(−(π/2)ln(2))  =−π ln(2) ⇒ f(x)=πln∣x∣ −πln∣ tan( ((arcsinx)/2))∣ −πln(2)  I =f((1/2)) =−2πln(2) −π ln∣ tan((π/(12)))∣  cos^2 ((π/(12))) = ((1+cos((π/6)))/2) = ((1+((√3)/2))/2) =((2+(√3))/4) ⇒cos((π/(12)))=((√(2+(√3)))/2)  sin^2 ((π/(12))) = ((1−cos((π/6)))/2) =((1−((√3)/2))/2) =((2−(√3))/4) ⇒sin((π/(12))) =((√(2−(√3)))/2)  tan((π/(12))) = ((√(2−(√3)))/( (√(2+(√3))))) = ((2−(√3))/( (√(4−3)))) =2−(√3).⇒  I  =−2πln(2)−π ln(2−(√3))
letI=0πln(2+cost)dtI=πln(2)+0πln(1+12cost)tletntroducetheparametricfunctionf(x)=0πln(1+xcost)dtwehaveI=f(12)(wetakex∣<1)f(x)=0πcost1+xcostdt=1x0π1+xcost11+xcostdt=πx1x0πdt1+xcostdtbutchangementtan(t2)=ugive0πdt1+xcost=011+x1u21+u22du1+u2=02du1+u2+x(1u2)=02du1+x+(1x)u2=21+x0du1+1x1+xu2=1x1+xu=α21+x011+α21+x1xdα=21x2π2=π1x2f(x)=πx1xπ1x2f(x)=πlnxπdxx1x2+cdxx1x2=x=sinθcosθdθsinθcosθ=dθsinθ=tan(θ2)=u12u1+u22du1+u2=duu=lnu=lntan(θ2)=lntan(arcinx2)f(x)=πlnxπlntan(arcsinx2)+cwehavef(1)=c=0πln(1+cosx)dx=0πln(2cos2(x2))dx=πln(2)+20πln(cos(x2))dx=x2=tπln(2)+20π2ln(cost)(2dt)=πln(2)+4(π2ln(2))=πln(2)f(x)=πlnxπlntan(arcsinx2)πln(2)I=f(12)=2πln(2)πlntan(π12)cos2(π12)=1+cos(π6)2=1+322=2+34cos(π12)=2+32sin2(π12)=1cos(π6)2=1322=234sin(π12)=232tan(π12)=232+3=2343=23.I=2πln(2)πln(23)
Commented by maxmathsup by imad last updated on 11/Jul/18
let  J  = ∫_0 ^π  ln(2−cost)dt  J = π ln(2) + ∫_0 ^π   ln(1−(1/2)cost)dt =πln(2) +f(−(1/2))  =πln(2) +f((1/2)) ( f is odd)  =πln(2) −2πln(2) −πln(2−(√3))=−π ln(2)−πln(2−(√3))
letJ=0πln(2cost)dtJ=πln(2)+0πln(112cost)dt=πln(2)+f(12)=πln(2)+f(12)(fisodd)=πln(2)2πln(2)πln(23)=πln(2)πln(23)
Commented by maxmathsup by imad last updated on 11/Jul/18
I = πln(2) +f((1/2)) =−π ln(2)−πln(2−(√3)) .
I=πln(2)+f(12)=πln(2)πln(23).
Commented by maxmathsup by imad last updated on 11/Jul/18
f is even .
fiseven.

Leave a Reply

Your email address will not be published. Required fields are marked *