Menu Close

find-0-pi-sinx-1-sin-2-x-dx-




Question Number 29443 by prof Abdo imad last updated on 08/Feb/18
find ∫_0 ^π     ((sinx)/( (√(1+sin^2 x))))dx
find0πsinx1+sin2xdx
Answered by sma3l2996 last updated on 09/Feb/18
t=cosx⇒dt=−sinxdx  ∫_0 ^π ((sinx)/( (√(1+sin^2 x))))dx=∫_(−1) ^1 (dt/( (√(1+(1−t^2 )))))=∫_(−1) ^1 (dt/( (√2)(√(1−((t/( (√2))))^2 ))))  t=(√2)u⇒dt=(√2)du  ∫_0 ^π ((sinx)/( (√(1+sin^2 x))))dx=∫_(−(√2)/2) ^((√2)/2) (du/( (√(1−u^2 ))))  u=siny⇒dy=(du/( (√(1−u^2 ))))  ∫_0 ^π ((sinx)/( (√(1+sin^2 x))))dx=∫_(−π/4) ^(π/4) dy=(π/2)
t=cosxdt=sinxdx0πsinx1+sin2xdx=11dt1+(1t2)=11dt21(t2)2t=2udt=2du0πsinx1+sin2xdx=2/22/2du1u2u=sinydy=du1u20πsinx1+sin2xdx=π/4π/4dy=π2

Leave a Reply

Your email address will not be published. Required fields are marked *