Menu Close

find-0-pi-sinx-2-cos-2x-dx-




Question Number 46854 by maxmathsup by imad last updated on 01/Nov/18
find  =∫_0 ^π    ((sinx)/(2+cos(2x)))dx
$${find}\:\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sinx}}{\mathrm{2}+{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$
Commented by maxmathsup by imad last updated on 01/Nov/18
et A =∫_0 ^π  ((sinx)/(2 +cos(2x)))dx ⇒ A =∫_0 ^π   ((sinx)/(2 +2cos^2 x−1))dx  =∫_0 ^π    ((sinx)/(1+2cos^2 x)) dx=_((√2)cosx=t)    ∫_(√2) ^(−(√2))    ((−1)/( (√2)(1+t^2 )))dt  =(1/( (√2)))  ∫_(−(√2)) ^(√2)   (dt/(1+t^2 )) =(√2)∫_0 ^(√2)  (dt/(1+t^2 )) =(√2)arctan((√2)) .
$${et}\:{A}\:=\int_{\mathrm{0}} ^{\pi} \:\frac{{sinx}}{\mathrm{2}\:+{cos}\left(\mathrm{2}{x}\right)}{dx}\:\Rightarrow\:{A}\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sinx}}{\mathrm{2}\:+\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sinx}}{\mathrm{1}+\mathrm{2}{cos}^{\mathrm{2}} {x}}\:{dx}=_{\sqrt{\mathrm{2}}{cosx}={t}} \:\:\:\int_{\sqrt{\mathrm{2}}} ^{−\sqrt{\mathrm{2}}} \:\:\:\frac{−\mathrm{1}}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\int_{−\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\sqrt{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{2}}\right)\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18
∫_0 ^π ((sinx)/(2+2cos^2 x−1))dx  =−1×∫_0 ^π ((d(cosx))/(1+2cos^2 x))  =((−1)/2)×∫_0 ^π ((d(cosx))/(((1/( (√2) )))^2 +cos^2 x))  =((−1)/2)×(√2) ∣tan^(−1) ((((√2) cosx)/1))∣_0 ^π   =((−1)/( (√2)))×{tan^(−1) (−(√2)[)−tan^(−1) ((√2) )}  =(1/( (√2)))×2tan^(−1) ((√2) )
$$\int_{\mathrm{0}} ^{\pi} \frac{{sinx}}{\mathrm{2}+\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1}}{dx} \\ $$$$=−\mathrm{1}×\int_{\mathrm{0}} ^{\pi} \frac{{d}\left({cosx}\right)}{\mathrm{1}+\mathrm{2}{cos}^{\mathrm{2}} {x}} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}×\int_{\mathrm{0}} ^{\pi} \frac{{d}\left({cosx}\right)}{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}\right)^{\mathrm{2}} +{cos}^{\mathrm{2}} {x}} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}×\sqrt{\mathrm{2}}\:\mid{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}\:{cosx}}{\mathrm{1}}\right)\mid_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{−\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\left\{{tan}^{−\mathrm{1}} \left(−\sqrt{\mathrm{2}}\left[\right)−{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\:\right)\right\}\right. \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\mathrm{2}{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\:\right) \\ $$
Commented by maxmathsup by imad last updated on 01/Nov/18
sir Tanmay your answer is correct thanks.
$${sir}\:{Tanmay}\:{your}\:{answer}\:{is}\:{correct}\:{thanks}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 02/Nov/18
mostwelcome...
$${mostwelcome}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *