Menu Close

find-0-pi-sinx-2-cos-2x-dx-




Question Number 46854 by maxmathsup by imad last updated on 01/Nov/18
find  =∫_0 ^π    ((sinx)/(2+cos(2x)))dx
find=0πsinx2+cos(2x)dx
Commented by maxmathsup by imad last updated on 01/Nov/18
et A =∫_0 ^π  ((sinx)/(2 +cos(2x)))dx ⇒ A =∫_0 ^π   ((sinx)/(2 +2cos^2 x−1))dx  =∫_0 ^π    ((sinx)/(1+2cos^2 x)) dx=_((√2)cosx=t)    ∫_(√2) ^(−(√2))    ((−1)/( (√2)(1+t^2 )))dt  =(1/( (√2)))  ∫_(−(√2)) ^(√2)   (dt/(1+t^2 )) =(√2)∫_0 ^(√2)  (dt/(1+t^2 )) =(√2)arctan((√2)) .
etA=0πsinx2+cos(2x)dxA=0πsinx2+2cos2x1dx=0πsinx1+2cos2xdx=2cosx=t2212(1+t2)dt=1222dt1+t2=202dt1+t2=2arctan(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18
∫_0 ^π ((sinx)/(2+2cos^2 x−1))dx  =−1×∫_0 ^π ((d(cosx))/(1+2cos^2 x))  =((−1)/2)×∫_0 ^π ((d(cosx))/(((1/( (√2) )))^2 +cos^2 x))  =((−1)/2)×(√2) ∣tan^(−1) ((((√2) cosx)/1))∣_0 ^π   =((−1)/( (√2)))×{tan^(−1) (−(√2)[)−tan^(−1) ((√2) )}  =(1/( (√2)))×2tan^(−1) ((√2) )
0πsinx2+2cos2x1dx=1×0πd(cosx)1+2cos2x=12×0πd(cosx)(12)2+cos2x=12×2tan1(2cosx1)0π=12×{tan1(2[)tan1(2)}=12×2tan1(2)
Commented by maxmathsup by imad last updated on 01/Nov/18
sir Tanmay your answer is correct thanks.
sirTanmayyouransweriscorrectthanks.
Commented by tanmay.chaudhury50@gmail.com last updated on 02/Nov/18
mostwelcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *