Menu Close

find-0-pi-t-2-sint-dt-




Question Number 27600 by abdo imad last updated on 10/Jan/18
find   ∫_0 ^π   (t/(2+sint)) dt
find0πt2+sintdt
Commented by abdo imad last updated on 11/Jan/18
let put I=∫_0 ^π   (t/(2+sint))dt and the ch. tan((t/2))=x⇔   t=2arctanx  I= ∫_0 ^∞     ((2arctanx)/(2+((2x)/(1+x^2 )))) ((2dx)/(1+x^2 ))= 2 ∫_0 ^∞   ((arctanx)/(1+x^2 +2x))dx  =2∫_0 ^∞    ((arctanx)/((x+1)^2 ))dx  then the integration per parts give  ∫_0 ^∞ ((arctanx)/((x+1)^2 ))dx= [−(1/(x+1)) arctanx]_0 ^∝ − ∫_0 ^∞ −(1/(x+1)) (dx/(1+x^2 ))  = ∫_0 ^∞   (dx/((x+1)(1+x^2 ))) let decompose rational fraction  F(x)= (1/((x+1)(1+x^2 )))⇒F(x)= (a/(x+1)) + ((bx+c)/(1+x^2 ))  a= lim_(x−>−1^ )  (x+1)F(x)= (1/2)  lim_(x−>∝) xF(x)=0=a+b⇒b=−(1/2) so  F(x)= (1/(2(x+1))) +  ((((−x)/2)+c)/(1+x^2 ))  ,F(0)=1= (1/2)+c⇒c=(1/2)  F(x)= (1/(2(x+1))) −(1/2) ((x−1)/(1+x^2 ))  I= ∫_0 ^∞ (dx/(x+1)) −∫_0 ^∞   ((x−1)/(1+x^2 ))dx  = ∫_0 ^∞  (dx/(x+1))  −(1/2) ∫_0 ^∞  ((2x−2)/(1+x^2 ))dx  I= ∫_0 ^∞ (   (1/(x+1)) −(1/2)((2x)/(1+x^2 )))dx + ∫_0 ^∞  (dx/(1+x^2 ))  I=[ln/x+1/−(1/2)ln/1+x^2 /]_0 ^∝  + (π/2)  I=[ln/((x+1)/( (√(1+x^2 ))))/ ]_0 ^∝ +(π/2)=0+(π/2)  ∫_0 ^π  (t/(2+sint))dt = (π/2) .
letputI=0πt2+sintdtandthech.tan(t2)=xt=2arctanxI=02arctanx2+2x1+x22dx1+x2=20arctanx1+x2+2xdx=20arctanx(x+1)2dxthentheintegrationperpartsgive0arctanx(x+1)2dx=[1x+1arctanx]001x+1dx1+x2=0dx(x+1)(1+x2)letdecomposerationalfractionF(x)=1(x+1)(1+x2)F(x)=ax+1+bx+c1+x2a=limx>1(x+1)F(x)=12limx>∝xF(x)=0=a+bb=12soF(x)=12(x+1)+x2+c1+x2,F(0)=1=12+cc=12F(x)=12(x+1)12x11+x2I=0dxx+10x11+x2dx=0dxx+11202x21+x2dxI=0(1x+1122x1+x2)dx+0dx1+x2I=[ln/x+1/12ln/1+x2/]0+π2I=[ln/x+11+x2/]0+π2=0+π20πt2+sintdt=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *