Menu Close

find-0-pi-x-2-cosx-sinx-dx-




Question Number 53418 by Abdo msup. last updated on 21/Jan/19
find ∫_0 ^π   (x/(2+cosx sinx))dx
find0πx2+cosxsinxdx
Commented by maxmathsup by imad last updated on 22/Jan/19
let I =∫_0 ^π   (x/(2 +cosx sinx))dx ⇒I =∫_0 ^π   (x/(2+(1/2)sin(2x)))dx  =∫_0 ^π   ((2xdx)/(4+sin(2x))) =_(2x=t)   ∫_0 ^(2π)    ((t )/(4+sin(t))) (dt/2) =(1/2) ∫_0 ^(2π)   (t/(4+sint))dt ⇒  2I = ∫_0 ^π   (t/(4+sin(t)))dt +∫_π ^(2π)   (t/(4+sin(t)))dt =H+K  K =_(t=π +u)   ∫_0 ^π   ((π+u)/(4−sinu)) du   let find H   H =_(tan((t/2))=u)    ∫_0 ^∞    ((2arctanu)/(4+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) =∫_0 ^∞   ((4 arctan(u))/(4+4u^2  +2u)) du  =2 ∫_0 ^∞    ((arctan(u))/(2u^2  +u +2)) du  =∫_0 ^∞    ((arctan(u))/(u^2  +(u/(2 ))+1))du =∫_0 ^∞   ((arctan(u))/(u^2  +2(1/4)u +(1/(16))+1−(1/(16))))du  =∫_0 ^∞   ((arctan(u))/((u+(1/4))^2  +((15)/(16))))du =_(u+(1/4)=((√(15))/4)α)     ((16)/(15))∫_(1/( (√(15)))) ^∞    ((artan(((α(√(15))−1)/4)))/(1+α^2 )) ((√(15))/4) dα  =(4/( (√(15))))∫_(1/( (√(15)))) ^∞     ((arctan(((α(√(15))−1)/4)))/(1+α^2 )) dα  this integral is at at form  ∫_λ ^∞   ((arctan(ax+b))/(x^2  +1))dx wich want a special studies...  ( you can consider f(a)=∫_λ ^∞   ((arctan(ax+b))/(x^2  +1))dx and calculate first f^′ (a)...)  we have K =π ∫_0 ^π   (du/(4−sinu)) +∫_0 ^π  ((udu)/(4−sinu))  ∫_0 ^π  ((udu)/(4−sinu)) drive us to ∫_0 ^∞   ((arctan(ax+b))/(x^2  +1)) dx.... let determine  ∫_0 ^π   (du/(4−sinu)) =_(tan((u/2))=t)  ∫_0 ^∞    (1/(4−((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^∞   ((2dt)/(4+4t^2 −2t))  =∫_0 ^∞      (dt/(2t^2 −t +2)) dt  =(1/2)∫_0 ^∞   (dt/(t^2 −(t/2)+1)) =(1/2)∫_0 ^∞  (dt/(t^2 −2(1/4)t +(1/(16))+1−(1/(16))))  =(1/2)∫_0 ^∞  (dt/((t−(1/4))^2  +((15)/(16)))) =_(t−(1/4)=((√(15))/4)u)    (1/2) ((16)/(15)) ∫_(−(1/( (√(15))))) ^(+∞)   (1/(1+u^2 )) ((√(15))/4) du  =(2/( (√(15))))[arctan(u)]_(−(1/( (√(15))))) ^(+∞)  =(2/( (√(15)))) {(π/2) +arctan((1/( (√(15)))))}
letI=0πx2+cosxsinxdxI=0πx2+12sin(2x)dx=0π2xdx4+sin(2x)=2x=t02πt4+sin(t)dt2=1202πt4+sintdt2I=0πt4+sin(t)dt+π2πt4+sin(t)dt=H+KK=t=π+u0ππ+u4sinuduletfindHH=tan(t2)=u02arctanu4+2u1+u22du1+u2=04arctan(u)4+4u2+2udu=20arctan(u)2u2+u+2du=0arctan(u)u2+u2+1du=0arctan(u)u2+214u+116+1116du=0arctan(u)(u+14)2+1516du=u+14=154α1615115artan(α1514)1+α2154dα=415115arctan(α1514)1+α2dαthisintegralisatatformλarctan(ax+b)x2+1dxwichwantaspecialstudies(youcanconsiderf(a)=λarctan(ax+b)x2+1dxandcalculatefirstf(a))wehaveK=π0πdu4sinu+0πudu4sinu0πudu4sinudriveusto0arctan(ax+b)x2+1dx.letdetermine0πdu4sinu=tan(u2)=t0142t1+t22dt1+t2=02dt4+4t22t=0dt2t2t+2dt=120dtt2t2+1=120dtt2214t+116+1116=120dt(t14)2+1516=t14=154u121615115+11+u2154du=215[arctan(u)]115+=215{π2+arctan(115)}

Leave a Reply

Your email address will not be published. Required fields are marked *