find-0-pi-x-2-cosx-sinx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 53418 by Abdo msup. last updated on 21/Jan/19 find∫0πx2+cosxsinxdx Commented by maxmathsup by imad last updated on 22/Jan/19 letI=∫0πx2+cosxsinxdx⇒I=∫0πx2+12sin(2x)dx=∫0π2xdx4+sin(2x)=2x=t∫02πt4+sin(t)dt2=12∫02πt4+sintdt⇒2I=∫0πt4+sin(t)dt+∫π2πt4+sin(t)dt=H+KK=t=π+u∫0ππ+u4−sinuduletfindHH=tan(t2)=u∫0∞2arctanu4+2u1+u22du1+u2=∫0∞4arctan(u)4+4u2+2udu=2∫0∞arctan(u)2u2+u+2du=∫0∞arctan(u)u2+u2+1du=∫0∞arctan(u)u2+214u+116+1−116du=∫0∞arctan(u)(u+14)2+1516du=u+14=154α1615∫115∞artan(α15−14)1+α2154dα=415∫115∞arctan(α15−14)1+α2dαthisintegralisatatform∫λ∞arctan(ax+b)x2+1dxwichwantaspecialstudies…(youcanconsiderf(a)=∫λ∞arctan(ax+b)x2+1dxandcalculatefirstf′(a)…)wehaveK=π∫0πdu4−sinu+∫0πudu4−sinu∫0πudu4−sinudriveusto∫0∞arctan(ax+b)x2+1dx….letdetermine∫0πdu4−sinu=tan(u2)=t∫0∞14−2t1+t22dt1+t2=∫0∞2dt4+4t2−2t=∫0∞dt2t2−t+2dt=12∫0∞dtt2−t2+1=12∫0∞dtt2−214t+116+1−116=12∫0∞dt(t−14)2+1516=t−14=154u121615∫−115+∞11+u2154du=215[arctan(u)]−115+∞=215{π2+arctan(115)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-184490Next Next post: find-0-lnx-x-2-x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.