find-0-pi-xdx-1-sinx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35242 by abdo mathsup 649 cc last updated on 17/May/18 find∫0πxdx1+sinx Commented by abdo mathsup 649 cc last updated on 17/May/18 letputI=∫0πxdx1+sinx.changementtan(x2)=tgiveI=∫0∞2arctant1+2t1+t22dt1+t2=4∫0∞arctan(t)1+t2+2tdt=4∫0∞arctan(t)(t+1)2dtandbyparts∫0∞arctan(t)(t+1)2dt=[−1t+1arctant]0+∞−∫0∞−1(t+1)(1+t2)dt=∫0∞dt(t+1)(t2+1)=∫0∞{1t+1−t−1t2+1}dt=∫0∞{1t+1−122tt2+1}dt+∫0∞dtt2+1=[ln(t+1t2+1)]0+∞+π2=π2⇒I=4.π2⇒I=2π. Answered by math1967 last updated on 17/May/18 2I=∫π0xdx1+sinx+∫π0(π−x)dx1+sin(π−x)=π∫π0dx1+sinx=π∫π0dx1+cos(π2−x)=π∫π0dx2cos2(π4−x2)[1+cosx=2cos2x2]=π∫π0sec2(π4−x2)dx=π2∫π0sec2(π4−x2)dx=π2[tan(π4−x2)−12]0π=−π{tan(−π4)−tanπ4}=2π∴I=π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: study-the-convergence-of-1-e-3x-e-2x-x-2-dx-Next Next post: if-y-sin-1-x-1-x-2-show-that-1-x-2-dy-dx-xy-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.