Menu Close

find-0-pi-xdx-1-sinx-




Question Number 35242 by abdo mathsup 649 cc last updated on 17/May/18
find  ∫_0 ^π     ((xdx)/(1+sinx))
find0πxdx1+sinx
Commented by abdo mathsup 649 cc last updated on 17/May/18
let put I  = ∫_0 ^π      ((xdx)/(1+sinx)) .changement tan((x/2))=t  give I = ∫_0 ^∞        ((2arctant)/(1+ ((2t)/(1+t^2 ))))  ((2dt)/(1+t^2 ))  = 4 ∫_0 ^∞       ((arctan(t))/(1+t^2  +2t))dt = 4 ∫_0 ^∞    ((arctan(t))/((t+1)^2 ))dt  and by parts   ∫_0 ^∞     ((arctan(t))/((t+1)^2 ))dt = [((−1)/(t+1)) arctant]_0 ^(+∞)  −∫_0 ^∞   ((−1)/((t+1)(1+t^2 )))dt  = ∫_0 ^∞       (dt/((t+1)(t^2 +1)))  =∫_0 ^∞ { (1/(t+1)) −((t−1)/(t^2 +1))}dt  =∫_0 ^∞ { (1/(t+1)) −(1/2) ((2t)/(t^2 +1))}dt  +∫_0 ^∞    (dt/(t^2 +1))  =[ln(((t+1)/(t^2 +1)))]_0 ^(+∞)     +(π/2) =(π/2) ⇒ I = 4.(π/2) ⇒  I =2π .
letputI=0πxdx1+sinx.changementtan(x2)=tgiveI=02arctant1+2t1+t22dt1+t2=40arctan(t)1+t2+2tdt=40arctan(t)(t+1)2dtandbyparts0arctan(t)(t+1)2dt=[1t+1arctant]0+01(t+1)(1+t2)dt=0dt(t+1)(t2+1)=0{1t+1t1t2+1}dt=0{1t+1122tt2+1}dt+0dtt2+1=[ln(t+1t2+1)]0++π2=π2I=4.π2I=2π.
Answered by math1967 last updated on 17/May/18
2I=∫_(0 ) ^π ((xdx)/(1+sinx)) +∫_0 ^π (((π−x)dx)/(1+sin(π−x)))   =π∫_0 ^π (dx/(1+sinx))=π∫_0 ^π (dx/(1+cos((π/2)−x)))  =π∫_0 ^π (dx/(2cos^2 ((π/4)−(x/2))))  [1+cosx=2cos^2 (x/2)]  =π∫_0 ^π sec^2 ((π/4)−(x/2))dx  =(π/2)∫_(0   ) ^π sec^2 ((π/4)−(x/2))dx=(π/2)[((tan((π/4)−(x/2)))/((−1)/2))]_0 ^π   =−π{tan(−(π/4))−tan(π/4)}=2π  ∴I=π
2I=π0xdx1+sinx+π0(πx)dx1+sin(πx)=ππ0dx1+sinx=ππ0dx1+cos(π2x)=ππ0dx2cos2(π4x2)[1+cosx=2cos2x2]=ππ0sec2(π4x2)dx=π2π0sec2(π4x2)dx=π2[tan(π4x2)12]0π=π{tan(π4)tanπ4}=2πI=π

Leave a Reply

Your email address will not be published. Required fields are marked *