Menu Close

find-0-t-n-e-t-1-dt-by-using-x-for-n-integr-x-n-1-1-n-x-with-x-gt-1-




Question Number 33119 by abdo imad last updated on 10/Apr/18
find  ∫_0 ^∞    (t^n /(e^t  −1)) dt by using ξ(x) for n integr  ξ(x)=Σ_(n=1) ^∞  (1/n^x )   with x>1 .
find0tnet1dtbyusingξ(x)fornintegrξ(x)=n=11nxwithx>1.
Commented by prof Abdo imad last updated on 15/Apr/18
let put A_n = ∫_0 ^∞   (t^n /(e^t  −1))dt   A_n = ∫_0 ^∞ ((e^(−t)  t^n )/(1−e^(−t) ))dt  =∫_0 ^∞  t^n e^(−t)  ( Σ_(p=0) ^∞  e^(−pt) )dt  = Σ_(p=0) ^∞   ∫_0 ^∞  t^n   e^(−(p+1)t)  dt  thech (p+1)t =u give  A_n  = Σ_(p=0) ^∞   ∫_0 ^∞  (u^n /((p+1)^n )) e^(−u)  (du/((p+1)))  = Σ_(p=0) ^∞   (1/((p+1)^(n+1) )) ∫_0 ^∞  u^n  e^(−u)  du  but we know that  Γ(x) = ∫_0 ^∞  t^(x−1)  e^(−t) dt  for x>0 ⇒  ∫_0 ^∞  u^n  e^(−u)  du = Γ(n+1)  and Σ_(p=0) ^∞   (1/((p+1)^(n+1) ))  =Σ_(p=1) ^∞   (1/p^(n+1) ) =ξ(n+1) ⇒  A_n = Γ(n+1).ξ(n+1) .
letputAn=0tnet1dtAn=0ettn1etdt=0tnet(p=0ept)dt=p=00tne(p+1)tdtthech(p+1)t=ugiveAn=p=00un(p+1)neudu(p+1)=p=01(p+1)n+10uneudubutweknowthatΓ(x)=0tx1etdtforx>00uneudu=Γ(n+1)andp=01(p+1)n+1=p=11pn+1=ξ(n+1)An=Γ(n+1).ξ(n+1).

Leave a Reply

Your email address will not be published. Required fields are marked *