Menu Close

find-0-t-p-e-t-1-dt-with-p-N-




Question Number 40883 by prof Abdo imad last updated on 28/Jul/18
find ∫_0 ^∞   (t^p /(e^t −1))dt with p∈N^★
find0tpet1dtwithpN
Answered by maxmathsup by imad last updated on 31/Jul/18
let A_p = ∫_0 ^∞    (t^p /(e^t −1))⇒A_p = ∫_0 ^∞   ((e^(−t)  t^p )/(1−e^(−t) ))  =∫_0 ^∞   e^(−t) t^p (Σ_(n=0) ^∞  e^(−nt) ) =Σ_(n=0) ^∞   ∫_0 ^∞   t^p  e^(−(n+1)t) dt changement (n+1)t =x  give  A_p = Σ_(n=0) ^∞   ((x/(n+1)))^p  e^(−x)  (dx/(n+1)) = Σ_(n=0) ^∞   ∫_0 ^∞ ((x^p  e^(−x) )/((n+1)^(p+1) ))dx  =Σ_(n=0) ^∞   (1/((n+1)^(p+1) )) ∫_0 ^∞   x^p  e^(−x) dx  by parts  w_p =∫_0 ^∞   x^p  e^(−x) dx =[−x^p  e^(−x) ]_0 ^(+∞)   +∫_0 ^∞  px^(p−1)  e^(−p) dx  =pw_(p−1)    ⇒w_p =p!w_0     and w_0 =∫_0 ^∞  e^(−x) dx =1 ⇒w_p =p! ⇒  A_p =p! Σ_(n=1) ^∞   (1/n^(p+1) ) =p! ξ(p+1)   with ξ(x)=Σ_(n=1) ^∞   (1/n^x ) ,   x>1
letAp=0tpet1Ap=0ettp1et=0ettp(n=0ent)=n=00tpe(n+1)tdtchangement(n+1)t=xgiveAp=n=0(xn+1)pexdxn+1=n=00xpex(n+1)p+1dx=n=01(n+1)p+10xpexdxbypartswp=0xpexdx=[xpex]0++0pxp1epdx=pwp1wp=p!w0andw0=0exdx=1wp=p!Ap=p!n=11np+1=p!ξ(p+1)withξ(x)=n=11nx,x>1

Leave a Reply

Your email address will not be published. Required fields are marked *