Menu Close

find-0-x-2-1-x-2-3-x-2-dx-




Question Number 29855 by abdo imad last updated on 13/Feb/18
find ∫_0 ^∞      (x^2 /((1+x^2 )( 3+x^2 )))dx .
find0x2(1+x2)(3+x2)dx.
Commented by abdo imad last updated on 13/Feb/18
let put I= ∫_0 ^∞     (x^2 /((1+x^2 )(3+x^2 )))  I=(1/2) ∫_(−∞) ^(+∞)     (x^2 /((1+x^2 )(3+x^2 ))) let introduce the complex  function f(z)= (z^2 /((1+z^2 )(3+z^2 ))) the poles  of f are i,−i  (√3) i and−(√3) i  and  ∫_(−∞) ^(+∞) f(z)dz=2iπ( Res(f,i) +Res(f,i(√3)))  Res(f,i)=lim_(z→i) (z−i)f(z)=  ((−1)/((2i)(3−1)))=((−1)/(4i))  Res(f,i(√3))=lim_(z→i(√3)) (z−i(√3) )f(z)= ((−3)/(2i(√3)(−2)))=(3/(4i(√3)))  ∫_(−∞) ^(+∞)   f(z)dz=2iπ( ((−1)/(4i)) +(3/(4i(√3)))) =−(π/2) +((3π)/(2(√3)))  =(π/2)( (√3) −1)  ⇒  I  = (π/4)((√3) −1) .
letputI=0x2(1+x2)(3+x2)I=12+x2(1+x2)(3+x2)letintroducethecomplexfunctionf(z)=z2(1+z2)(3+z2)thepolesoffarei,i3iand3iand+f(z)dz=2iπ(Res(f,i)+Res(f,i3))Res(f,i)=limzi(zi)f(z)=1(2i)(31)=14iRes(f,i3)=limzi3(zi3)f(z)=32i3(2)=34i3+f(z)dz=2iπ(14i+34i3)=π2+3π23=π2(31)I=π4(31).
Answered by ajfour last updated on 13/Feb/18
   = −(1/2)∫(dx/(1+x^2 )) +(3/2)∫(dx/(3+x^2 ))     = −((tan^(−1) x)/2)+((√3)/2)tan^(−1) ((x/( (√3))))+c .  with limits 0 to ∞    I = −(π/4)+(((√3)π)/4)  = ((((√3)−1)π)/4) .
=12dx1+x2+32dx3+x2=tan1x2+32tan1(x3)+c.withlimits0toI=π4+3π4=(31)π4.
Commented by abdo imad last updated on 14/Feb/18
yes correct thanks...
yescorrectthanks

Leave a Reply

Your email address will not be published. Required fields are marked *