Menu Close

find-0-x-2-2-x-4-x-2-1-dx-




Question Number 118030 by mathmax by abdo last updated on 14/Oct/20
find ∫_0 ^∞   ((x^2 −2)/(x^4 +x^2  +1))dx
find0x22x4+x2+1dx
Commented by Ar Brandon last updated on 14/Oct/20
My idea is often to express the terms in the  numerator like those of the square-roots of the first  and last terms in the denominator. Just like in Q117446  x^2 −2=(x^2 −1)−1             =(x^2 −1)−(((x^2 +1)−(x^2 −1))/2)             =(3/2)(x^2 −1)−(1/2)(x^2 +1)
Myideaisoftentoexpressthetermsinthenumeratorlikethoseofthesquarerootsofthefirstandlasttermsinthedenominator.JustlikeinQ117446x22=(x21)1=(x21)(x2+1)(x21)2=32(x21)12(x2+1)
Answered by Ar Brandon last updated on 14/Oct/20
I=∫_0 ^∞ ((x^2 −2)/(x^4 +x^2 +1))dx=(3/2)∫_0 ^∞ (((x^2 −1))/(x^4 +x^2 +1))dx−(1/2)∫_0 ^∞ (((x^2 +1))/(x^4 +x^2 +1))dx     =(3/2)∫_0 ^∞ ((1−(1/x^2 ))/(x^2 +1+(1/x^2 )))dx−(1/2)∫_0 ^∞ ((1+(1/x^2 ))/(x^2 +1+(1/x^2 )))dx     =(3/2)∫_0 ^∞ ((1−(1/x^2 ))/((x+(1/x))^2 −1))dx−(1/2)∫_0 ^∞ ((1+(1/x^2 ))/((x−(1/x))^2 +3))dx     =(3/2)∫_(+∞) ^(+∞) (du/(u^2 −1))−(1/2)∫_(−∞) ^(+∞) (dv/(v^2 +3))=−(1/2)∫_(−∞) ^(+∞) (dv/(v^2 +3))     =−[(1/(2(√3)))Arctan((v/( (√3))))]_(−∞) ^(+∞) =−(1/(2(√3)))((π/2)+(π/2))=−(π/(2(√3)))
I=0x22x4+x2+1dx=320(x21)x4+x2+1dx120(x2+1)x4+x2+1dx=32011x2x2+1+1x2dx1201+1x2x2+1+1x2dx=32011x2(x+1x)21dx1201+1x2(x1x)2+3dx=32++duu2112+dvv2+3=12+dvv2+3=[123Arctan(v3)]+=123(π2+π2)=π23
Commented by Lordose last updated on 14/Oct/20
Excellente
Excellente
Commented by Ar Brandon last updated on 14/Oct/20
Merci. J'suis ravi !
Commented by Ar Brandon last updated on 14/Oct/20
S'il vous plaît, pouvez-vous jeter un oeil sur la Question 117972 ? Il semble avoir un problème avec votre réponse.
Commented by Lordose last updated on 15/Oct/20
Je pense que la meilleure façon de résoudre la question 117927 est de dessiner les cartes.��
Commented by Ar Brandon last updated on 15/Oct/20
Je n'arrive pas à le faire malheureusement
Commented by Lordose last updated on 15/Oct/20
D'accord. Je suis un peu occupé maintenant. quand je serai libre, je résoudrai.
Commented by Ar Brandon last updated on 15/Oct/20
D'accord, merci
Answered by Bird last updated on 15/Oct/20
I=∫_0 ^∞  ((x^2 −2)/(x^4 +x^2 +1))dx ⇒  I =(1/2)∫_(−∞) ^(+∞ )  ((x^2 −2)/(x^(4 )  +x^2 +1))dx  let ϕ(z)=((z^2 −2)/(z^4 +z^2  +1)) poles ofϕ?  z^4  +z^2 +1=0 ⇒u^2 +u+1=0 (u=z^(2))   Δ=−3 ⇒u_1 =((−1+i(√3))/2)=e^((i2π)/3)   u_2 =e^(−((i2π)/3))   ⇒ϕ(z)=((z^2 −2)/((z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) )))  =((z^2 −2)/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,e^((iπ)/3) )+Res(ϕ,−e^(−((iπ)/3)) )}  Res(ϕ,e^((iπ)/3) )=((e^((2iπ)/3) −2)/(2e^((iπ)/3) (2isin(((2π)/3)))))  =(1/(2i(√3))) (e^((iπ)/3) −2e^(−((iπ)/3)) )  Res(ϕ,−e^(−((iπ)/3)) )=((e^(−((2iπ)/3)) −2)/((−2e^(−((iπ)/3)) )(−2isin(((2π)/3))))  =((e^(−((iπ)/3)) −2e^((iπ)/3) )/(2i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(2i(√3))){e^((iπ)/3) −2e^(−((iπ)/3)) +e^(−((iπ)/3)) −2e^((iπ)/3) }  =(π/( (√3))){ −e^((iπ)/3) −e^(−((iπ)/3)) }  =−(π/( (√3)))(2cos((π/3))) =−(π/( (√3))) ⇒  I =−(π/(2(√3)))
I=0x22x4+x2+1dxI=12+x22x4+x2+1dxletφ(z)=z22z4+z2+1polesofφ?z4+z2+1=0u2+u+1=0(u=z2)Δ=3u1=1+i32=ei2π3u2=ei2π3φ(z)=z22(z2ei2π3)(z2ei2π3)=z22(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}Res(φ,eiπ3)=e2iπ322eiπ3(2isin(2π3))=12i3(eiπ32eiπ3)Res(φ,eiπ3)=e2iπ32(2eiπ3)(2isin(2π3)=eiπ32eiπ32i3+φ(z)dz=2iπ2i3{eiπ32eiπ3+eiπ32eiπ3}=π3{eiπ3eiπ3}=π3(2cos(π3))=π3I=π23

Leave a Reply

Your email address will not be published. Required fields are marked *