Menu Close

find-0-x-2-3-x-4-1-2-dx-




Question Number 35061 by math khazana by abdo last updated on 14/May/18
find   ∫_0 ^∞        ((x^2  +3)/((x^4  +1)^2 ))dx
find0x2+3(x4+1)2dx
Commented by math khazana by abdo last updated on 15/May/18
let put I = ∫_0 ^∞   ((x^2 +3)/((x^4  +1)^2 ))dx  2I  =∫_(−∞) ^(+∞)     ((x^2  +3)/((x^4  +1)^2 ))dx let consider the complex  function f(z) = ((z^2  +3)/((z^4  +1)^2 ))  f(z) = ((z^2 +3)/((z^2 −i)^2 (z^2 +i)^2 )) = ((z^2  +3)/((z−(√i))^2 (z+(√i))^2 (z−(√(−i)))^2 (z +(√(−i)))^2 ))  = ((z^2  +3)/((z−e^(i(π/4)) )^2 (z +e^(i(π/4)) )^2 (z −e^(−i(π/4)) )^2 (z +e^(−i(π/4)) )^2 ))  all poles of f are doubles  ∫_(−∞) ^(+∞) f(z)dz =2iπ{ Res(f ,e^(i(π/4)) ) +Res(f, −e^(−i(π/4)) )}  Res(f ,e^(i(π/4)) ) =lim_(z→e^(i(π/4)) )     (1/((2−1)!)) { (z−e^(i(π/4)) )^2 f(z)}^′   =lim_(z→e^(i(π/4)) )      ( ((z^2  +3)/((z +(√i))^2 (z^2  +i)^2 )))^′      = lim_(z→e^(i(π/4)) )    ((2z (z +(√i))^2 (z^2  +i)^2  − (z^2 +3)( 2(z+(√i))(z^2 +i)^2  +4z(z^2 +i)(z+(√i))^2 ))/((z+(√i))^4 (z^2  +i)^4 ))  =lim_(z→e^(i(π/4)) )   ((2z(z+(√i))(z^2  +i) −2(z^2 +3)(z^2  +i +4z(z+(√i))))/((z +(√i))^3 (z^2  +i)^3 ))  = ((2e^(i(π/4))  2e^(i(π/4)) (2i) −2(i+3)(2i +4e^(i(π/4)) (2e^(i(π/4)) ))/((2e^(i(π/4)) )^2 (2i)^3 ))  =((−8 −2(i+3)(10i))/(−8i .4i)) = ((8  +20i(i+3))/(−32))  = −((8 −20 +60i)/(32)) =−((−12 +60i)/(32)) =((−3 +15i)/8)  for Res(f ,−e^(−i(π/4)) )  wefolow  the same method...  be continued...
letputI=0x2+3(x4+1)2dx2I=+x2+3(x4+1)2dxletconsiderthecomplexfunctionf(z)=z2+3(z4+1)2f(z)=z2+3(z2i)2(z2+i)2=z2+3(zi)2(z+i)2(zi)2(z+i)2=z2+3(zeiπ4)2(z+eiπ4)2(zeiπ4)2(z+eiπ4)2allpolesoffaredoubles+f(z)dz=2iπ{Res(f,eiπ4)+Res(f,eiπ4)}Res(f,eiπ4)=limzeiπ41(21)!{(zeiπ4)2f(z)}=limzeiπ4(z2+3(z+i)2(z2+i)2)=limzeiπ42z(z+i)2(z2+i)2(z2+3)(2(z+i)(z2+i)2+4z(z2+i)(z+i)2)(z+i)4(z2+i)4=limzeiπ42z(z+i)(z2+i)2(z2+3)(z2+i+4z(z+i))(z+i)3(z2+i)3=2eiπ42eiπ4(2i)2(i+3)(2i+4eiπ4(2eiπ4)(2eiπ4)2(2i)3=82(i+3)(10i)8i.4i=8+20i(i+3)32=820+60i32=12+60i32=3+15i8forRes(f,eiπ4)wefolowthesamemethodbecontinued
Answered by tanmay.chaudhury50@gmail.com last updated on 16/May/18
=∫_0 ^∞ ((x^2 +3)/(x^4 (x^2 +(1/(x^2  )))^2 ))  =∫_0 ^∞ ((1/x^(2 ) )/((x^2 +(1/(x^(2 )   )))^(2 ) ))+∫_0 ^∞ ((3/x^4 )/((x^2 +(1/(x^2   )))^2 ))  I_1 =(1/2)∫_0 ^∞ (((1+(1/(x^2   )))−(1−(1/(x^2  ))))/((x^2 +(1/x^2 ) )^(2 ) ))dx  =(1/2)∫_0 ^∞ (((1+(1/(x^2  ))) dx)/({(x−(1/x))^2 +2}^2  )) −(1/2)∫_0 ^∞ (((1−(1/(x^2  ))) dx)/({(x+(1/x))^2 −2}^2 ))  contd  z_1 =x−(1/x)       z_(2 ) =x+(1/x)    (1/2)∫_(−∞) ^∞ (dz_1 /((z_1 ^2 +2)^(2 ) ))      −(1/2)∫_∞ ^∞ (dz_2 /((z_2 ^2 −2)^2 ))→its value 0  z_1 =(√2) tanθ  (1/2)∫_(−Π/2) ^(Π/2) (((√2) sec^2 θ)/(2^2 sec^4 θ)) dθ  ((√2)/8)∫_(−Π/2) ^(Π/2) ((1+cos2θ)/2)dθ  =((√2)/(16))(Π)+(((√2) )/(16))×∣((sin2θ)/2)∣_(−Π/2) ^(Π/2)   =(((√2)(Π))/(16))+(((√(2 )) )/(32)){sinΠ−sin(−Π)}  =(√2) (Π/(16))  pls check
=0x2+3x4(x2+1x2)2=01x2(x2+1x2)2+03x4(x2+1x2)2I1=120(1+1x2)(11x2)(x2+1x2)2dx=120(1+1x2)dx{(x1x)2+2}2120(11x2)dx{(x+1x)22}2contdz1=x1xz2=x+1x12dz1(z12+2)212dz2(z222)2itsvalue0z1=2tanθ12Π/2Π/22sec2θ22sec4θdθ28Π/2Π/21+cos2θ2dθ=216(Π)+216×sin2θ2Π/2Π/2=2(Π)16+232{sinΠsin(Π)}=2Π16plscheck
Answered by MJS last updated on 15/May/18
∫((x^2 +3)/((x^4 +1)^2 ))dx=i             [((Ostrogradski′s Method)),((∫((p(x))/(q(x)))dx=((p_1 (x))/(q_1 (x)))+∫((p_2 (x))/(q_2 (x)))dx)),((q_1 (x)=gcd(q(x),q′(x)))),((q_2 (x)=((q(x))/(q_1 (x))))),((p(x)=x^2 +3; q(x)=(x^4 +1)^2 )),((q′(x)=8x^3 (x^4 +1); q_1 (x)=q_2 (x)=x^4 +1)),((now we calculate the factors of)),((p_1 (x) and p_2 (x) with degree(p_n )<degree(q_n ))),((using this equation (comparing factors))),((((p(x))/(q(x)))=(d/dx)[((p_1 (x))/(q_1 (x)))]+((p_2 (x))/(q_2 (x))))),((p_1 (x)=a_1 x^3 +b_1 x^2 +c_1 x+d_1 )),((p_2 (x)=a_2 x^3 +b_2 x^2 +c_2 x+d_2 )),((⇒ p_1 (x)=(1/4)(x^3 +3x); p_2 (x)=(1/4)(x^2 +9))) ]  =((x(x^2 +3))/(4(x^4 +1)))+(1/4)∫((x^2 +9)/(x^4 +1))dx=              ∫((x^2 +9)/(x^4 +1))dx=∫((x^2 +9)/((x^2 +(√2)x+1)(x^2 −(√2)x+1)))dx=            =((√2)/4)∫(((8x+9(√2))/(x^2 +(√2)x+1))−((8x−9(√2))/(x^2 −(√2)x+1)))dx=            =((√2)/4)∫(4((2x+(√2))/(x^2 +(√2)x+1))+5(√2)(1/(x^2 +(√2)x+1))−4((2x−(√2))/(x^2 −(√2)x+1))+5(√2)(1/(x^2 −(√2)x+1)))dx=                       [((the 1^(st)  and 3^(rd)  terms are of the form)),((F(x)=∫a((f′(x))/(f(x)))dx ⇒ F(x)=aln(f(x)))),((the 2^(nd)  and 4^(th)  terms can be solved using)),((u=(√2)x±1 → dx=(du/( (√2))) and lead to)),((F(x)=(√2)∫(du/(u^2 +2)) ⇒ F(x)=(√2)arctan(u))) ]            =(√2)(ln(x^2 +(√2)x+1)−ln(x^2 −(√2)x+1))+((5(√2))/2)(arctan((√2)x+1)+arctan((√2)x−1))    =((x(x^2 +3))/(4(x^4 +1)))+((√2)/4)ln(((∣x^2 +(√2)x+1∣)/(∣x^2 −(√2)x+1∣)))+((5(√2))/8)(arctan((√2)x+1)+arctan((√2)x−1))+C    ∫_0 ^∞ ((x^2 +3)/((x^4 +1)^2 ))dx=((5(√2))/8)π
x2+3(x4+1)2dx=i[OstrogradskisMethodp(x)q(x)dx=p1(x)q1(x)+p2(x)q2(x)dxq1(x)=gcd(q(x),q(x))q2(x)=q(x)q1(x)p(x)=x2+3;q(x)=(x4+1)2q(x)=8x3(x4+1);q1(x)=q2(x)=x4+1nowwecalculatethefactorsofp1(x)andp2(x)withdegree(pn)<degree(qn)usingthisequation(comparingfactors)p(x)q(x)=ddx[p1(x)q1(x)]+p2(x)q2(x)p1(x)=a1x3+b1x2+c1x+d1p2(x)=a2x3+b2x2+c2x+d2p1(x)=14(x3+3x);p2(x)=14(x2+9)]=x(x2+3)4(x4+1)+14x2+9x4+1dx=x2+9x4+1dx=x2+9(x2+2x+1)(x22x+1)dx==24(8x+92x2+2x+18x92x22x+1)dx==24(42x+2x2+2x+1+521x2+2x+142x2x22x+1+521x22x+1)dx=[the1stand3rdtermsareoftheformF(x)=af(x)f(x)dxF(x)=aln(f(x))the2ndand4thtermscanbesolvedusingu=2x±1dx=du2andleadtoF(x)=2duu2+2F(x)=2arctan(u)]=2(ln(x2+2x+1)ln(x22x+1))+522(arctan(2x+1)+arctan(2x1))=x(x2+3)4(x4+1)+24ln(x2+2x+1x22x+1)+528(arctan(2x+1)+arctan(2x1))+C0x2+3(x4+1)2dx=528π

Leave a Reply

Your email address will not be published. Required fields are marked *