Question Number 35061 by math khazana by abdo last updated on 14/May/18

Commented by math khazana by abdo last updated on 15/May/18

Answered by tanmay.chaudhury50@gmail.com last updated on 16/May/18

Answered by MJS last updated on 15/May/18
![∫((x^2 +3)/((x^4 +1)^2 ))dx=i [((Ostrogradski′s Method)),((∫((p(x))/(q(x)))dx=((p_1 (x))/(q_1 (x)))+∫((p_2 (x))/(q_2 (x)))dx)),((q_1 (x)=gcd(q(x),q′(x)))),((q_2 (x)=((q(x))/(q_1 (x))))),((p(x)=x^2 +3; q(x)=(x^4 +1)^2 )),((q′(x)=8x^3 (x^4 +1); q_1 (x)=q_2 (x)=x^4 +1)),((now we calculate the factors of)),((p_1 (x) and p_2 (x) with degree(p_n )<degree(q_n ))),((using this equation (comparing factors))),((((p(x))/(q(x)))=(d/dx)[((p_1 (x))/(q_1 (x)))]+((p_2 (x))/(q_2 (x))))),((p_1 (x)=a_1 x^3 +b_1 x^2 +c_1 x+d_1 )),((p_2 (x)=a_2 x^3 +b_2 x^2 +c_2 x+d_2 )),((⇒ p_1 (x)=(1/4)(x^3 +3x); p_2 (x)=(1/4)(x^2 +9))) ] =((x(x^2 +3))/(4(x^4 +1)))+(1/4)∫((x^2 +9)/(x^4 +1))dx= ∫((x^2 +9)/(x^4 +1))dx=∫((x^2 +9)/((x^2 +(√2)x+1)(x^2 −(√2)x+1)))dx= =((√2)/4)∫(((8x+9(√2))/(x^2 +(√2)x+1))−((8x−9(√2))/(x^2 −(√2)x+1)))dx= =((√2)/4)∫(4((2x+(√2))/(x^2 +(√2)x+1))+5(√2)(1/(x^2 +(√2)x+1))−4((2x−(√2))/(x^2 −(√2)x+1))+5(√2)(1/(x^2 −(√2)x+1)))dx= [((the 1^(st) and 3^(rd) terms are of the form)),((F(x)=∫a((f′(x))/(f(x)))dx ⇒ F(x)=aln(f(x)))),((the 2^(nd) and 4^(th) terms can be solved using)),((u=(√2)x±1 → dx=(du/( (√2))) and lead to)),((F(x)=(√2)∫(du/(u^2 +2)) ⇒ F(x)=(√2)arctan(u))) ] =(√2)(ln(x^2 +(√2)x+1)−ln(x^2 −(√2)x+1))+((5(√2))/2)(arctan((√2)x+1)+arctan((√2)x−1)) =((x(x^2 +3))/(4(x^4 +1)))+((√2)/4)ln(((∣x^2 +(√2)x+1∣)/(∣x^2 −(√2)x+1∣)))+((5(√2))/8)(arctan((√2)x+1)+arctan((√2)x−1))+C ∫_0 ^∞ ((x^2 +3)/((x^4 +1)^2 ))dx=((5(√2))/8)π](https://www.tinkutara.com/question/Q35123.png)