Menu Close

find-1-1-dt-t-1-t-2-




Question Number 28885 by abdo imad last updated on 31/Jan/18
find  ∫_(−1) ^1     (dt/(t +(√(1+t^2 )))) .
find11dtt+1+t2.
Commented by abdo imad last updated on 02/Feb/18
let put I= ∫_(−1) ^1   (dt/(t +(√(1+t^2 ))))  I= ∫_(−1) ^1  (((√(1+t^2 )) −t)/(1+t^2 −t^2 ))dt= ∫_(−1) ^1 (√(1+t^2 dt)) −∫_(−1) ^1 tdt  = 2∫_0 ^1 (√(1+t^2 )) dt −0= 2 ∫_0 ^1  (√(1+t^2 )) dt  the ch.t=tanx give  ∫_0 ^1 (√(1+t^2 )) dt= ∫_0 ^(π/4)  cosx (1+tan^2 x)dx= ∫_0 ^(π/4)    (dx/(cosx)) and the ch.  tan((x/2))=u give  ∫_0 ^(π/4)   (dx/(cosx))= ∫_0 ^((√2)−1)       (1/((1−u^2 )/(1+u^2 ))) ((2du)/(1+u^2 ))=∫_0 ^((√2)−1)   ((2du)/(1−u^2 ))  =∫_0 ^((√2)−1) ( (1/(1+u)) +(1/(1−u)))du =[ln∣((1+u)/(1−u))∣]_0 ^((√2) −1)    =ln( ((√2)/(2−(√2))))=ln( ((√2)/( (√2)((√2)−1))))= −ln((√2)−1).  I=−2ln((√2)−1).
letputI=11dtt+1+t2I=111+t2t1+t2t2dt=111+t2dt11tdt=2011+t2dt0=2011+t2dtthech.t=tanxgive011+t2dt=0π4cosx(1+tan2x)dx=0π4dxcosxandthech.tan(x2)=ugive0π4dxcosx=02111u21+u22du1+u2=0212du1u2=021(11+u+11u)du=[ln1+u1u]021=ln(222)=ln(22(21))=ln(21).I=2ln(21).

Leave a Reply

Your email address will not be published. Required fields are marked *