find-1-1-dx-1-x-1-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 31517 by abdo imad last updated on 09/Mar/18 find∫−11dx1+x+1−x. Commented by abdo imad last updated on 12/Mar/18 letputI(ξ)=∫−1+ξ1+ξdx1+x+1−xwehaveI=limξ→0I(ξ)butI(ξ)=∫−1+ξ1+ξ1+x−1−x2xdx=12(∫−1+ξ1+ξ1+xxdx−∫−1+ξ1+ξ1−xxdx)ch.1+x=t⇒1+x=t2⇒x=t2−1give∫−1+ξ1+ξ1+xxdx=∫ξ2+ξtt2−1(2t)dt=2∫ξ2+ξt2−1+1t2−1dt=2(2+ξ−ξ)+∫ξ2+ξ(1t−1−1t+1)dt=2(2+ξ−ξ)+[ln∣t−1t+1∣]ξ2+ξ=2(2+ξ−ξ)+ln∣2+ξ−12+ξ+1∣−ln∣ξ−1ξ+1∣→ξ→022+ln(2−12+1)andch.1−x=t⇒1−x=t2⇒x=1−t2give∫−1+ξ1+ξ1−xxdx=∫2−ξ−ξt1−t2(−2t)dt=2∫2−ξ−ξt2−1+1t2−1dt=2(−ξ−2−ξ)+∫2−ξ−ξ(1t−1−1t+1)dt=2(−ξ−2−ξ)+[ln∣t−1t+1∣]2−ξ−ξ=2(−ξ−2−ξ)+ln∣−ξ−1−ξ+1∣−ln∣2−ξ−12−ξ+1∣→−22−ln(2−12+1)⇒limξ→0I(ξ)=12(22+ln(2−12+1)+22+ln(2−12+1))=22+ln(2−12+1). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-dx-x-1-x-2-Next Next post: Question-162589 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.