Menu Close

find-1-1-dx-1-x-1-x-




Question Number 31517 by abdo imad last updated on 09/Mar/18
find ∫_(−1) ^1      (dx/( (√(1+x)) +(√(1−x))))  .
find11dx1+x+1x.
Commented by abdo imad last updated on 12/Mar/18
let put I(ξ) =∫_(−1+ξ) ^(1+ξ)    (dx/( (√(1+x)) +(√(1−x)) ))  we have I=lim_(ξ→0)  I(ξ)  but  I(ξ)= ∫_(−1+ξ) ^(1+ξ)   (((√(1+x)) −(√(1−x)) )/(2x))dx  =(1/2)(  ∫_(−1+ξ) ^(1+ξ)  ((√(1+x))/x)dx −∫_(−1+ξ) ^(1+ξ)  ((√(1−x))/x) dx )  ch.(√(1+x)) =t ⇒1+x=t^2  ⇒x=t^2 −1 give  ∫_(−1+ξ) ^(1+ξ)   ((√(1+x))/x)dx= ∫_(√ξ) ^(√(2+ξ))  (t/(t^2 −1)) (2t)dt  = 2∫_(√ξ) ^(√(2+ξ))  ((t^2  −1 +1)/(t^2  −1))dt=2((√(2+ξ)) −(√ξ)) + ∫_(√ξ) ^(√(2+ξ))  ((1/(t−1)) −(1/(t+1)))dt  =2((√(2+ξ)) −(√ξ)) + [ln∣((t−1)/(t+1))∣]_(√ξ) ^(√(2+ξ))   =2((√(2+ξ)) −(√ξ) ) +ln∣(((√(2+ξ)) −1)/( (√(2+ξ)) +1))∣ −ln∣(((√ξ) −1)/( (√ξ) +1))∣  →_(ξ→0)  2(√2)  +ln((((√2) −1)/( (√2) +1)))  and ch.(√(1−x)) =t⇒1−x=t^2 ⇒x=1−t^2  give  ∫_(−1+ξ) ^(1+ξ)   ((√(1−x))/x)dx  = ∫_(√(2−ξ)) ^(√(−ξ))   (t/(1−t^2 )) (−2t)dt  = 2 ∫_(√(2−ξ)) ^(√(−ξ))   ((t^2  −1+1)/(t^2  −1))dt= 2((√(−ξ)) −(√(2−ξ))) +∫_(√(2−ξ)) ^(√(−ξ)) ((1/(t−1)) −(1/(t+1)))dt  =2((√(−ξ)) −(√(2−ξ))) +[ln∣((t−1)/(t+1))∣]_(√(2−ξ)) ^(√(−ξ))    =2((√(−ξ)) −(√(2−ξ)) ) + ln ∣(((√(−ξ)) −1)/( (√(−ξ)) +1))∣ −ln∣(((√(2−ξ)) −1)/( (√(2−ξ)) +1))∣  →−2(√2)  −ln((((√2) −1)/( (√2) +1))) ⇒  lim_(ξ→0)  I(ξ) =(1/2)(2(√2) +ln((((√2) −1)/( (√2) +1))) +2(√(2 )) +ln((((√2) −1)/( (√2) +1))))  =2(√2)  +ln((((√2) −1)/( (√2) +1))) .
letputI(ξ)=1+ξ1+ξdx1+x+1xwehaveI=limξ0I(ξ)butI(ξ)=1+ξ1+ξ1+x1x2xdx=12(1+ξ1+ξ1+xxdx1+ξ1+ξ1xxdx)ch.1+x=t1+x=t2x=t21give1+ξ1+ξ1+xxdx=ξ2+ξtt21(2t)dt=2ξ2+ξt21+1t21dt=2(2+ξξ)+ξ2+ξ(1t11t+1)dt=2(2+ξξ)+[lnt1t+1]ξ2+ξ=2(2+ξξ)+ln2+ξ12+ξ+1lnξ1ξ+1ξ022+ln(212+1)andch.1x=t1x=t2x=1t2give1+ξ1+ξ1xxdx=2ξξt1t2(2t)dt=22ξξt21+1t21dt=2(ξ2ξ)+2ξξ(1t11t+1)dt=2(ξ2ξ)+[lnt1t+1]2ξξ=2(ξ2ξ)+lnξ1ξ+1ln2ξ12ξ+122ln(212+1)limξ0I(ξ)=12(22+ln(212+1)+22+ln(212+1))=22+ln(212+1).

Leave a Reply

Your email address will not be published. Required fields are marked *