Menu Close

find-1-1-e-x-1-x-2-dx-




Question Number 92134 by mathmax by abdo last updated on 05/May/20
find ∫_(−1) ^1  (e^x /( (√(1−x^2 ))))dx
find11ex1x2dx
Commented by mathmax by abdo last updated on 05/May/20
we use the approximation  ∫_(−1) ^1  ((f(x))/( (√(1−x^2 ))))dx ∼(π/n)Σ_(k=1) ^n  f(cos((((2k−1)π)/(2n))))  ⇒∫_(−1) ^1  (e^x /( (√(1−x^2 ))))dx ∼(π/n)Σ_(k=1) ^n  e^(cos((((2k−1)π)/(2n))))   let take n=3 ⇒∫_(−1) ^1  (e^x /( (√(1−x^2 ))))dx ∼(π/3){ e^(cos((π/6)))  +e^(cos(((3π)/6)))  +e^(cos(((5π)/6))) }  =(π/3){ e^((√3)/2)  + 1 + e^(−((√3)/2)) } =(π/3){2ch(((√3)/2))+1} ⇒  ∫_(−1) ^1  (e^x /( (√(1−x^2 ))))dx ∼ (π/3) +((2π)/3)ch(((√3)/2))
weusetheapproximation11f(x)1x2dxπnk=1nf(cos((2k1)π2n))11ex1x2dxπnk=1necos((2k1)π2n)lettaken=311ex1x2dxπ3{ecos(π6)+ecos(3π6)+ecos(5π6)}=π3{e32+1+e32}=π3{2ch(32)+1}11ex1x2dxπ3+2π3ch(32)

Leave a Reply

Your email address will not be published. Required fields are marked *