find-1-1-x-2-arctan-2x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 86956 by abdomathmax last updated on 01/Apr/20 find∫(1−1x2)arctan(2x)dx Commented by Ar Brandon last updated on 01/Apr/20 Letu=arctan(2x)⇒du=2⋅11+(2x)2dxdv=(1−1x2)dx⇒v=(x+1x)I=(x+1x2)arctan(2x)−2∫(x+1x)⋅(11+4x2)dx=(x+1x2)arctan(2x)−2∫x2+1x⋅11+4x2dx=(x+1x2)arctan(2x)−2∫x2+1x(1+4x2)dxx2+1x(1+4x2)=Ax+Bx+C4x2+1=A(4x2+1)+(Bx+C)xx(4x2+1)=(4A+B)x2+Cx+Ax(4x2+1)4A+B=1C=0A=1⇒B=−3∫x2x(1+4x2)dx=∫(1x−3x1+4x2)=∫1xdx−38∫8x1+4x2dx=lnx−38ln(1+4x2)+Constant∫(1−1x2)arctan(2x)dx=(x+1x)arctan(2x)−2lnx+34ln(1+4x2)+constant Commented by mathmax by abdo last updated on 01/Apr/20 thankyousir Commented by Ar Brandon last updated on 01/Apr/20 �� Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-arctan-x-x-dx-Next Next post: Find-all-integer-values-of-a-such-that-the-quadratic-expression-x-a-x-1991-1-can-be-factored-as-a-product-x-b-x-c-where-b-and-c-are-integers- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.