Menu Close

find-1-1-x-2-arctan-2x-dx-




Question Number 86956 by abdomathmax last updated on 01/Apr/20
find ∫(1−(1/x^2 ))arctan(2x)dx
find(11x2)arctan(2x)dx
Commented by Ar Brandon last updated on 01/Apr/20
Let u=arctan(2x) ⇒ du=2∙(1/(1+(2x)^2 ))dx          dv=(1−(1/x^2 ))dx  ⇒  v=(x+(1/x))    I=(x+(1/x^2 ))arctan(2x)−2∫(x+(1/x))∙((1/(1+4x^2 )))dx     =(x+(1/x^2 ))arctan(2x)−2∫((x^2 +1)/x)∙(1/(1+4x^2 ))dx     =(x+(1/x^2 ))arctan(2x)−2∫((x^2 +1)/(x(1+4x^2 )))dx      ((x^2 +1)/(x(1+4x^2 )))=(A/x)+((Bx+C)/(4x^2 +1))                        =((A(4x^2 +1)+(Bx+C)x)/(x(4x^2 +1)))=(((4A+B)x^2 +Cx+A)/(x(4x^2 +1)))  4A+B=1  C=0  A=1 ⇒  B=−3      ∫(x^2 /(x(1+4x^2 )))dx=∫((1/x)−((3x)/(1+4x^2 )))=∫(1/x)dx−(3/8)∫((8x)/(1+4x^2 ))dx                                  =lnx−(3/8)ln(1+4x^2 )+Constant    ∫(1−(1/x^2 ))arctan(2x)dx=(x+(1/x))arctan(2x)−2lnx+(3/4)ln(1+4x^2 )+constant
Letu=arctan(2x)du=211+(2x)2dxdv=(11x2)dxv=(x+1x)I=(x+1x2)arctan(2x)2(x+1x)(11+4x2)dx=(x+1x2)arctan(2x)2x2+1x11+4x2dx=(x+1x2)arctan(2x)2x2+1x(1+4x2)dxx2+1x(1+4x2)=Ax+Bx+C4x2+1=A(4x2+1)+(Bx+C)xx(4x2+1)=(4A+B)x2+Cx+Ax(4x2+1)4A+B=1C=0A=1B=3x2x(1+4x2)dx=(1x3x1+4x2)=1xdx388x1+4x2dx=lnx38ln(1+4x2)+Constant(11x2)arctan(2x)dx=(x+1x)arctan(2x)2lnx+34ln(1+4x2)+constant
Commented by mathmax by abdo last updated on 01/Apr/20
thank you sir
thankyousir
Commented by Ar Brandon last updated on 01/Apr/20
��

Leave a Reply

Your email address will not be published. Required fields are marked *