Menu Close

find-1-1-x-ln-x-1-x-1-dx-




Question Number 33983 by abdo imad last updated on 28/Apr/18
find ∫_(1() ^∞ (1/x)ln(((x+1)/(x−1)))dx.
$${find}\:\int_{\mathrm{1}\left(\right.} ^{\infty} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx}. \\ $$
Commented by abdo mathsup 649 cc last updated on 03/May/18
let put I  = ∫_1 ^(+∞)   (1/x)ln(((x+1)/(x−1)))dx  changement  x=(1/t) give  I = ∫_0 ^1  t ln(((1+t)/(1−t)))(dt/t^2 )  = ∫_0 ^1   (1/t)ln( ((1+t)/(1−t)))dt  = (π^2 /4)  this result is proved .
$${let}\:{put}\:{I}\:\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right){dx}\:\:{changement} \\ $$$${x}=\frac{\mathrm{1}}{{t}}\:{give}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}\:{ln}\left(\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\right)\frac{{dt}}{{t}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{t}}{ln}\left(\:\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\right){dt}\:\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\:{this}\:{result}\:{is}\:{proved}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *