Question Number 80804 by mr W last updated on 06/Feb/20
$${Find} \\ $$$$\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+…+\left[\sqrt{\mathrm{100}}\right]=? \\ $$$${with}\:\left[{x}\right]={greatest}\:{integer}\:{function} \\ $$$$ \\ $$$${can}\:{we}\:{find}\:{a}\:{general}\:{formula}\:{for}\: \\ $$$$\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+…+\left[\sqrt{{n}}\right] \\ $$$${in}\:{terms}\:{of}\:{n}? \\ $$
Commented by MJS last updated on 06/Feb/20
$$\left[\sqrt{{k}}\right]={n};\:{n}^{\mathrm{2}} \leqslant{k}\leqslant{n}\left({n}+\mathrm{2}\right) \\ $$$$\mathrm{does}\:\mathrm{this}\:\mathrm{help}? \\ $$
Commented by mr W last updated on 07/Feb/20
$${yes},\:{it}\:{helps}.\:{thank}\:{you}\:{sir}! \\ $$
Answered by behi83417@gmail.com last updated on 07/Feb/20
$$\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]=\mathrm{3}×\mathrm{1} \\ $$$$\left[\sqrt{\mathrm{4}}\right]+………\left[\sqrt{\mathrm{8}}\right]=\mathrm{5}×\mathrm{2} \\ $$$$\left[\sqrt{\mathrm{9}}\right]+………\left[\sqrt{\mathrm{15}}\right]=\mathrm{7}×\mathrm{3} \\ $$$$\left[\sqrt{\mathrm{16}}\right]+……..\left[\sqrt{\mathrm{24}}\right]=\mathrm{9}×\mathrm{4} \\ $$$$\left[\sqrt{\mathrm{25}}\right]+……..\left[\sqrt{\mathrm{35}}\right]=\mathrm{11}×\mathrm{5} \\ $$$$\left[\sqrt{\mathrm{36}}\right]+……..\left[\sqrt{\mathrm{48}}\right]=\mathrm{13}×\mathrm{6} \\ $$$$\left[\sqrt{\mathrm{49}}\right]+………\left[\sqrt{\mathrm{63}}\right]=\mathrm{15}×\mathrm{7} \\ $$$$\left[\sqrt{\mathrm{64}}\right]+………\left[\sqrt{\mathrm{80}}\right]=\mathrm{17}×\mathrm{8} \\ $$$$\left[\sqrt{\mathrm{81}}\right]+………\left[\sqrt{\mathrm{100}}\right]=\mathrm{19}×\mathrm{9}+\mathrm{10} \\ $$$$\Sigma=\mathrm{3}×\mathrm{1}+\mathrm{5}×\mathrm{2}+\mathrm{7}×\mathrm{3}+..+\mathrm{19}×\mathrm{9}+\mathrm{10}=\mathrm{625}\blacksquare \\ $$
Answered by mr W last updated on 07/Feb/20
$${S}_{{n}} =\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+…+\left[\sqrt{{n}}\right] \\ $$$${let}\:{m}=\lfloor\sqrt{{n}}\rfloor \\ $$$$\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]=\mathrm{3}×\mathrm{1} \\ $$$$\left[\sqrt{\mathrm{4}}\right]+\left[\sqrt{\mathrm{5}}\right]+\left[\sqrt{\mathrm{6}}\right]+\left[\sqrt{\mathrm{7}}\right]+\left[\sqrt{\mathrm{8}}\right]=\mathrm{5}×\mathrm{2} \\ $$$$\left[\sqrt{\mathrm{9}}\right]+\left[\sqrt{\mathrm{10}}\right]+…+\left[\sqrt{\mathrm{15}}\right]=\mathrm{7}×\mathrm{3} \\ $$$$… \\ $$$$\left[\sqrt{{k}^{\mathrm{2}} }\right]+\left[\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}\right]+…+\left[\sqrt{{k}^{\mathrm{2}} +\mathrm{2}{k}}\right]=\left(\mathrm{2}{k}+\mathrm{1}\right)×{k} \\ $$$$… \\ $$$$\left[\sqrt{{m}^{\mathrm{2}} }\right]+\left[\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right]+…+\sqrt{{n}}=\left({n}+\mathrm{1}−{m}^{\mathrm{2}} \right)×{m} \\ $$$$ \\ $$$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{m}−\mathrm{1}} {\sum}}\left(\mathrm{2}{k}+\mathrm{1}\right){k}+\left({n}+\mathrm{1}−{m}^{\mathrm{2}} \right){m} \\ $$$${S}_{{n}} =\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{m}−\mathrm{1}} {\sum}}{k}^{\mathrm{2}} +\underset{{k}=\mathrm{1}} {\overset{{m}−\mathrm{1}} {\sum}}{k}+\left({n}+\mathrm{1}−{m}^{\mathrm{2}} \right){m} \\ $$$${S}_{{n}} =\mathrm{2}×\frac{\left({m}−\mathrm{1}\right){m}\left(\mathrm{2}{m}−\mathrm{1}\right)}{\mathrm{6}}+\frac{\left({m}−\mathrm{1}\right){m}}{\mathrm{2}}+\left({n}+\mathrm{1}−{m}^{\mathrm{2}} \right){m} \\ $$$${S}_{{n}} =\frac{\left({m}−\mathrm{1}\right){m}\left(\mathrm{4}{m}+\mathrm{1}\right)}{\mathrm{6}}+\left({n}+\mathrm{1}−{m}^{\mathrm{2}} \right){m} \\ $$$${S}_{{n}} ={m}\left({n}+\mathrm{1}\right)−\frac{{m}\left({m}+\mathrm{1}\right)\left(\mathrm{2}{m}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$ \\ $$$${with}\:{n}=\mathrm{100}: \\ $$$${m}=\lfloor\sqrt{\mathrm{100}}\rfloor=\mathrm{10} \\ $$$${S}_{\mathrm{100}} =\mathrm{10}×\mathrm{101}−\frac{\mathrm{10}×\mathrm{11}×\mathrm{21}}{\mathrm{6}}=\mathrm{625} \\ $$$$ \\ $$$${with}\:{n}=\mathrm{1000}: \\ $$$${m}=\lfloor\sqrt{\mathrm{1000}}\rfloor=\mathrm{31} \\ $$$${S}_{\mathrm{1000}} =\mathrm{31}×\mathrm{1001}−\frac{\mathrm{31}×\mathrm{32}×\mathrm{63}}{\mathrm{6}}=\mathrm{20615} \\ $$$$===================== \\ $$$${we}\:{see} \\ $$$$\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+…+\left[\sqrt{{n}}\right]={m}\left({n}+\mathrm{1}\right)−\frac{{m}\left({m}+\mathrm{1}\right)\left(\mathrm{2}{m}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$${i}.{e}.\: \\ $$$$\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+…+\left[\sqrt{{n}}\right]={m}\left({n}+\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{k}^{\mathrm{2}} \\ $$$${this}\:{can}\:{be}\:{generalised}: \\ $$$$\left[\sqrt[{{r}}]{\mathrm{1}}\right]+\left[\sqrt[{{r}}]{\mathrm{2}}\right]+\left[\sqrt[{{r}}]{\mathrm{3}}\right]+…+\left[\sqrt[{{r}}]{{n}}\right]={m}\left({n}+\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{k}^{{r}} \\ $$$${with}\:{m}=\lfloor\sqrt[{{r}}]{{n}}\rfloor \\ $$$$ \\ $$$${e}.{g}. \\ $$$$\left[\sqrt[{\mathrm{5}}]{\mathrm{1}}\right]+\left[\sqrt[{\mathrm{5}}]{\mathrm{2}}\right]+\left[\sqrt[{\mathrm{5}}]{\mathrm{3}}\right]+…+\left[\sqrt[{\mathrm{5}}]{{n}}\right]={m}\left({n}+\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{k}^{\mathrm{5}} \\ $$$${or} \\ $$$$\left[\sqrt[{\mathrm{5}}]{\mathrm{1}}\right]+\left[\sqrt[{\mathrm{5}}]{\mathrm{2}}\right]+\left[\sqrt[{\mathrm{5}}]{\mathrm{3}}\right]+…+\left[\sqrt[{\mathrm{5}}]{{n}}\right]={m}\left({n}+\mathrm{1}\right)−\frac{{m}^{\mathrm{2}} \left({m}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{m}^{\mathrm{2}} +\mathrm{2}{m}−\mathrm{1}\right)}{\mathrm{12}} \\ $$
Commented by mr W last updated on 07/Feb/20
$${thank}\:{you}\:{for}\:{trying}\:{and}\:{reviewing}\:{sir}! \\ $$
Commented by behi83417@gmail.com last updated on 07/Feb/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{dear}\:\mathrm{master}. \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{wonderful}\:\mathrm{and}\:\mathrm{great}. \\ $$