Menu Close

Find-1-2-3-2-3-5-2-5-7-2-7-




Question Number 192149 by Shrinava last updated on 09/May/23
Find:  (1/2) + (3/2^3 ) + (5/2^5 ) + (7/2^7 ) + ...
Find:12+323+525+727+
Answered by aleks041103 last updated on 09/May/23
Σ_(k=1) ^∞ (2k−1)x^(2k−1) =x(Σ_(k=1) ^∞ x^(2k−1) )′=  =x(xΣ_(k=1) ^∞ x^(2(k−1)) )′=x(x(1/(1−x^2 )))′=  =x(d/dx)((x/(1−x^2 )))=x(((1−x^2 )−(−2x)x)/(1−x^2 ))=  =x((1+x^2 )/(1−x^2 ))  ⇒Σ_(k=1) ^∞ ((2k−1)/2^(2k−1) )=(x((1+x^2 )/(1−x^2 )))_(x=1/2) =(1/2) ((1+(1/4))/(1−(1/4)))=  =(1/2) (5/3)  ⇒(1/2)+(3/2^3 )+(5/2^5 )+...=(5/6)
k=1(2k1)x2k1=x(k=1x2k1)==x(xk=1x2(k1))=x(x11x2)==xddx(x1x2)=x(1x2)(2x)x1x2==x1+x21x2k=12k122k1=(x1+x21x2)x=1/2=121+14114==125312+323+525+=56
Commented by AST last updated on 09/May/23
(d/dx)((x/(1−x^2 )))=((1+x^2 )/((+x^2 −1)^2 ))  ⇒x(d/dx)((x/(1−x^2 )))=((x(1+x^2 ))/((+x^2 −1)^2 ))  ⇒For x=(1/2); we get ((10)/9)
ddx(x1x2)=1+x2(+x21)2xddx(x1x2)=x(1+x2)(+x21)2Forx=12;weget109
Commented by BaliramKumar last updated on 09/May/23
(1/2) + (3/2^3 ) + (5/2^5 ) = ((33)/(32)) > 1
12+323+525=3332>1
Answered by mehdee42 last updated on 09/May/23
we will consider ; A=x+3x^3 +5x^5 +...    ;  0<x<1  ⇒x^2 A=x^3 +3x^5 +5x^7 +...  ⇒A−Ax^2 =x+2(x^3 +x^5 +x^7 +...)  (1−x^2 )A=x+((2x^3 )/(1−x^2 ))⇒A=((x+x^3 )/((1−x^2 )^2 ))  now regarding  the question , if  “x=(1/2) ” we will have  answer = ((10)/9) ✓
wewillconsider;A=x+3x3+5x5+;0<x<1x2A=x3+3x5+5x7+AAx2=x+2(x3+x5+x7+)(1x2)A=x+2x31x2A=x+x3(1x2)2nowregardingthequestion,ifx=12wewillhaveanswer=109
Answered by universe last updated on 09/May/23
 s       =     (1/2)+(3/2^3 )+(5/2^5 )+(7/2^7 )+...  (1/4)s   =            (1/2^3 )+(3/2^5 )+(5/2^7 )+...  (3/4)s    =   (1/2)+(1/2^2 )+(1/2^4 )+(1/2^6 )+...  (3/4)s   =   (1/2)  +  ((1/2^2 )/(1−1/2^2 ))   (3/4)s =  (1/2) + (1/3)  s =  (5/6)×(4/3) = ((20)/(18))  s = ((10)/9)
s=12+323+525+727+14s=123+325+527+34s=12+122+124+126+34s=12+1/2211/2234s=12+13s=56×43=2018s=109
Answered by York12 last updated on 09/May/23
that′s AGP
thatsAGP
Answered by manxsol last updated on 11/May/23
 t_k =q     ((2k−1)/2^(2k−1  ) )
tk=q2k122k1

Leave a Reply

Your email address will not be published. Required fields are marked *