Menu Close

find-1-2-dx-1-3x-1-3x-




Question Number 92410 by mathmax by abdo last updated on 06/May/20
find ∫_1 ^(√2)     (dx/( (√(1+3x))−(√(1−3x))))
$${find}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}+\mathrm{3}{x}}−\sqrt{\mathrm{1}−\mathrm{3}{x}}} \\ $$
Commented by Prithwish Sen 1 last updated on 06/May/20
1−3x≥0  ⇒x≤(1/3)  and 1+3x≥0⇒x≥−(1/3)  ∴ the integral does not exist in the given interval.  In the interval −(1/3)≤x≤(1/3)  the function has only  finite number of removable discontinuity.
$$\mathrm{1}−\mathrm{3x}\geqslant\mathrm{0}\:\:\Rightarrow\mathrm{x}\leqslant\frac{\mathrm{1}}{\mathrm{3}}\:\:\mathrm{and}\:\mathrm{1}+\mathrm{3x}\geqslant\mathrm{0}\Rightarrow\mathrm{x}\geqslant−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\therefore\:\mathrm{the}\:\mathrm{integral}\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist}\:\mathrm{in}\:\mathrm{the}\:\mathrm{given}\:\mathrm{interval}. \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{interval}\:−\frac{\mathrm{1}}{\mathrm{3}}\leqslant\mathrm{x}\leqslant\frac{\mathrm{1}}{\mathrm{3}}\:\:\mathrm{the}\:\mathrm{function}\:\mathrm{has}\:\mathrm{only} \\ $$$$\mathrm{finite}\:\mathrm{number}\:\mathrm{of}\:\mathrm{removable}\:\mathrm{discontinuity}. \\ $$
Commented by Prithwish Sen 1 last updated on 06/May/20
sir I think the problem will be  ∫_(−(1/3)) ^(1/3) (dx/( (√(1+3x))−(√(1−3x))))
$$\mathrm{sir}\:\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{will}\:\mathrm{be} \\ $$$$\int_{−\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}+\mathrm{3x}}−\sqrt{\mathrm{1}−\mathrm{3x}}} \\ $$
Commented by mathmax by abdo last updated on 07/May/20
also this integral is divergent due to 0
$${also}\:{this}\:{integral}\:{is}\:{divergent}\:{due}\:{to}\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *