Menu Close

find-1-arctan-x-x-2-




Question Number 27805 by abdo imad last updated on 15/Jan/18
find  ∫_1 ^∝   ((arctan(αx))/x^2 ) .
find1arctan(αx)x2.
Commented by abdo imad last updated on 16/Jan/18
let put I= ∫_1 ^∝  ((arctan(αx))/x^2 )dx  integrate per parts  I=[ −(1/x) arctan(αx)]_1 ^(+∝)  − ∫_1 ^(+∝) −(1/x) (α/(1+α^2 x^2 ))dx  I= artan(α) +α∫_1 ^(+∝)    (dx/(x(1+α^2 x^2 ))) we use the ch. x=(1/α)t  ∫_1 ^(+∝)   (dx/(x(1+α^2 x^2 ))) = ∫_α ^(+∝)   (((1/α)dt)/((1/α)t(1+t^2 ))) = ∫_α ^(+∝)    (dt/(t(1+t^2 )))   but(1/(t (1+t^2 ))) = (1/t) − (t/(1+t^2 )) ⇒ ∫  (dt/(t(1+t^2 )))= ln/t/ −(1/2)ln(1+t^2 ) +k  = ln/(t/( (√(1+t^2 ))))/  so   ∫_α ^(+∝)   (dt/(t(1+t^2 ))) =[ ln/ (t/( (√(1+t^2 ))))/]_α ^(+∝)   =−ln/ (α/( (√(1+α^(2 ) ))))/  I=artan(α)−α ln/ (α/( (√(1+α^2 ))))/  .
letputI=1arctan(αx)x2dxintegrateperpartsI=[1xarctan(αx)]1+1+1xα1+α2x2dxI=artan(α)+α1+dxx(1+α2x2)weusethech.x=1αt1+dxx(1+α2x2)=α+1αdt1αt(1+t2)=α+dtt(1+t2)but1t(1+t2)=1tt1+t2dtt(1+t2)=ln/t/12ln(1+t2)+k=ln/t1+t2/soα+dtt(1+t2)=[ln/t1+t2/]α+=ln/α1+α2/I=artan(α)αln/α1+α2/.

Leave a Reply

Your email address will not be published. Required fields are marked *