find-1-arctan-x-x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27805 by abdo imad last updated on 15/Jan/18 find∫1∝arctan(αx)x2. Commented by abdo imad last updated on 16/Jan/18 letputI=∫1∝arctan(αx)x2dxintegrateperpartsI=[−1xarctan(αx)]1+∝−∫1+∝−1xα1+α2x2dxI=artan(α)+α∫1+∝dxx(1+α2x2)weusethech.x=1αt∫1+∝dxx(1+α2x2)=∫α+∝1αdt1αt(1+t2)=∫α+∝dtt(1+t2)but1t(1+t2)=1t−t1+t2⇒∫dtt(1+t2)=ln/t/−12ln(1+t2)+k=ln/t1+t2/so∫α+∝dtt(1+t2)=[ln/t1+t2/]α+∝=−ln/α1+α2/I=artan(α)−αln/α1+α2/. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-158878Next Next post: 1-Find-the-term-independent-of-x-in-the-expansion-of-x-2-x-10- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.