Menu Close

find-1-C-e-z-2-z-2-4z-3-dz-C-z-2-5-2-cosx-x-2-2x-2-dx-




Question Number 146977 by tabata last updated on 16/Jul/21
find  (1) ∫_C  (e^z^2  /(z^2 +4z+3))dz  ,C:∣z−2∣=5    (2)∫_(−∞) ^( ∞) ((cosx)/(x^2 +2x+2))dx
find(1)Cez2z2+4z+3dz,C:∣z2∣=5(2)cosxx2+2x+2dx
Answered by mathmax by abdo last updated on 17/Jul/21
1) Φ=∫_C  (e^z^2  /(z^2  +4z+3))dz  withC→∣z−2∣=5  Δ^′  =4−3=1 ⇒z_1 =−2+1=−1  and z_2 =−2−1=−3  f(z)=(e^z^2  /((z−z_1 )(z−z_2 )))  residus ⇒∫_C f(z)dz =2iπ{Res(f,z_1 )+Res(f,z_2 )}  =2iπ{(e^z_1 ^2  /(z_1 −z_2 ))+(e^z_2 ^2  /(z_2 −z_1 ))} =2iπ{(e/2) +(e^9 /(−2))}=iπ{e−e^9 }
1)Φ=Cez2z2+4z+3dzwithC→∣z2∣=5Δ=43=1z1=2+1=1andz2=21=3f(z)=ez2(zz1)(zz2)residusCf(z)dz=2iπ{Res(f,z1)+Res(f,z2)}=2iπ{ez12z1z2+ez22z2z1}=2iπ{e2+e92}=iπ{ee9}
Answered by mathmax by abdo last updated on 17/Jul/21
Ψ=∫_(−∞) ^(+∞)  ((cosx)/(x^2  +2x+2))dx =Re(∫_(−∞) ^(+∞)  (e^(ix) /(x^2  +2x+2))dx)  let ϕ(z)=(e^(iz) /(z^2  +2x+2))  poles of ϕ?  Δ^′  =1−2=−1 ⇒z_1 =−1+i  and z_2 =−1−i ⇒ϕ(z)=(e^(iz) /((z−z_1 )(z−z_2 )))  residus ⇒∫_R ϕ(z)dz =2iπRes(ϕ/z_1 )=2iπ.(e^(iz_1 ) /(z_1 −z_2 ))  =2iπ.(e^(i(−1+i)) /(2i))=π e^(−1) .e^(−i)  =(π/e)(cos(1)−isin(1)) ⇒  Ψ=(π/e)cos(1)               (1=1radian)
Ψ=+cosxx2+2x+2dx=Re(+eixx2+2x+2dx)letφ(z)=eizz2+2x+2polesofφ?Δ=12=1z1=1+iandz2=1iφ(z)=eiz(zz1)(zz2)residusRφ(z)dz=2iπRes(φ/z1)=2iπ.eiz1z1z2=2iπ.ei(1+i)2i=πe1.ei=πe(cos(1)isin(1))Ψ=πecos(1)(1=1radian)

Leave a Reply

Your email address will not be published. Required fields are marked *