find-1-dx-x-2-1-x-x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 64866 by mathmax by abdo last updated on 22/Jul/19 find∫1+∞dxx21+x+x2 Commented by mathmax by abdo last updated on 23/Jul/19 letA=∫1+∞dxx2x2+x+1wehavex2+x+1=(x+12)2+34changementx+12=32sh(t)givesh(t)=2x+13A=∫argsh(3)+∞1(32sht−12)232ch(t)32ch(t)dt=4∫ln(3+4)+∞dt(3sh(t)−1)2=4∫ln(2+3)+∞dt3sh2t−23sht+1=4∫ln(2+3)+∞dt3ch(2t)−12−23sh(t)+1=8∫ln(2+3)+∞dt3ch(2t)−3−43sh(t)+2=8∫ln(2+3)+∞dt3ch(2t)−43sh(t)−1=8∫ln(2+3)+∞dt3e2t+e−2t2−43et−e−t2−1=16∫ln(2+3)+∞dt3e2t+3e−2t−43et+43e−t−2=et=u16∫2+3+∞duu(3u2+3u−2−43u+43u−1−2)=16∫2+3+∞du3u3+3u−1−43u2+43−2u=16∫2+3+∞udu3u4+3−43u3+43u−2u2letdecomposeF(u)=u3u4−43u3−2u2+43u+3….becontinued…. Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19 letuschangeu=1xdu=−dxx2thenwehaveI=∫01udu1+u+u2=12[∫012u+11+u+u2du−∫01du1+u+u2]forthe2ndintegralJweknowsthat1+u+u2=34[(2u+13)2+1]letuschangev=arctan(2u+13)dv=23du(2u+13)2+1soJ=∫01du1+u+u2=∫π6π3tan2v+1dv=∫π6π3dvcosv=∫π6π3cosvdv(1−sinv)(1+sinv)=∫π6π312.[cosv1−sinv+cosv1+sinv]dv=[12ln∣1+sinv1−sinv∣]π6π3=ln(4+233)NowI=12.([21+u+u2]01−J)=12.[(23−2)−ln(4+233)] Commented by mathmax by abdo last updated on 28/Jul/19 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Where-is-the-function-f-x-ln-x-tan-1-x-x-2-1-continous-Next Next post: e-x-x-6-x-5-5x-4-1-x-6-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.