Menu Close

find-1-dx-x-2-1-x-x-2-




Question Number 64866 by mathmax by abdo last updated on 22/Jul/19
find ∫_1 ^(+∞)  (dx/(x^2 (√(1+x+x^2 ))))
find1+dxx21+x+x2
Commented by mathmax by abdo last updated on 23/Jul/19
let A =∫_1 ^(+∞)   (dx/(x^2 (√(x^2 +x+1))))   we have x^2  +x+1 =(x+(1/2))^2  +(3/4)  changement x+(1/2)=((√3)/2) sh(t) give sh(t)=((2x+1)/( (√3)))  A = ∫_(argsh((√3))) ^(+∞)     (1/((((√3)/2)sht−(1/2))^2 ((√3)/2)ch(t))) ((√3)/2) ch(t)dt  = 4∫_(ln((√3)+(√4))) ^(+∞)     (dt/(((√3)sh(t)−1)^2 )) =4 ∫_(ln(2+(√3))) ^(+∞)   (dt/(3sh^2 t −2(√3)sht +1))  =4 ∫_(ln(2+(√3))) ^(+∞)  (dt/(3((ch(2t)−1)/2)−2(√3)sh(t) +1))  =8∫_(ln(2+(√3))) ^(+∞)      (dt/(3ch(2t)−3 −4(√3)sh(t) +2))  =8 ∫_(ln(2+(√3))) ^(+∞)   (dt/(3ch(2t)−4(√3)sh(t)−1))  =8 ∫_(ln(2+(√3))) ^(+∞)      (dt/(3((e^(2t)  +e^(−2t) )/2)−4(√3)((e^t −e^(−t) )/(2 ))−1))  =16 ∫_(ln(2+(√3))) ^(+∞)     (dt/(3 e^(2t)  +3e^(−2t)  −4(√3)e^t  +4(√3)e^(−t)  −2))  =_(e^t  =u)     16 ∫_(2+(√3)) ^(+∞)         (du/(u( 3 u^2  +3u^(−2)  −4(√3)u +4(√3)u^(−1) −2)))  =16 ∫_(2+(√3)) ^(+∞)       (du/(3u^3  +3u^(−1) −4(√3)u^2  +4(√3)−2u))  =16 ∫_(2+(√3)) ^(+∞)    ((udu)/(3u^4  +3 −4(√3)u^3  +4(√3)u−2u^2 ))  let decompose  F(u) =(u/(3u^4 −4(√3)u^3  −2u^2  +4(√3)u +3)) ....be continued....
letA=1+dxx2x2+x+1wehavex2+x+1=(x+12)2+34changementx+12=32sh(t)givesh(t)=2x+13A=argsh(3)+1(32sht12)232ch(t)32ch(t)dt=4ln(3+4)+dt(3sh(t)1)2=4ln(2+3)+dt3sh2t23sht+1=4ln(2+3)+dt3ch(2t)1223sh(t)+1=8ln(2+3)+dt3ch(2t)343sh(t)+2=8ln(2+3)+dt3ch(2t)43sh(t)1=8ln(2+3)+dt3e2t+e2t243etet21=16ln(2+3)+dt3e2t+3e2t43et+43et2=et=u162+3+duu(3u2+3u243u+43u12)=162+3+du3u3+3u143u2+432u=162+3+udu3u4+343u3+43u2u2letdecomposeF(u)=u3u443u32u2+43u+3.becontinued.
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
let us change  u=(1/x)    du=−(dx/x^2 )        then  we have I=∫_(0  ) ^1 ((udu)/( (√(1+u+u^2 )))) =(1/2)[∫_0 ^1 ((2u+1)/( (√(1+u+u^2 )))) du −∫_(0 ) ^1 (du/( (√(1+u+u^2 ))))]  for the 2^(nd )   integral J we knows that 1+u+u^2 =(3/4)[(((2u+1)/( (√3))))^2 +1]  let us change v=arctan(((2u+1)/( (√3))))    dv= (((2/( (√3)))du)/((((2u+1)/( (√3))))^2 +1))  so  J=∫_0 ^1   (du/( (√(1+u+u^2 ))))=∫_(π/6) ^(π/3) (√(tan^2 v+1)) dv=∫_(π/6) ^(π/3)  (dv/(cosv))=∫_(π/6) ^(π/3) ((cosv dv)/((1−sinv)(1+sinv)))=∫_(π/6) ^(π/3) (1/2).[((cosv)/(1−sinv)) +((cosv)/(1+sinv))]dv                      =[(1/2)ln∣((1+sinv)/(1−sinv))∣ ]_(π/6) ^(π/3) =ln(((4+2(√3))/3))  Now    I=(1/2).( [2(√(1+u+u^2 ))]_0 ^1   − J )=(1/2).[( 2(√(3 )) −2)−ln(((4+2(√3))/3))]
letuschangeu=1xdu=dxx2thenwehaveI=01udu1+u+u2=12[012u+11+u+u2du01du1+u+u2]forthe2ndintegralJweknowsthat1+u+u2=34[(2u+13)2+1]letuschangev=arctan(2u+13)dv=23du(2u+13)2+1soJ=01du1+u+u2=π6π3tan2v+1dv=π6π3dvcosv=π6π3cosvdv(1sinv)(1+sinv)=π6π312.[cosv1sinv+cosv1+sinv]dv=[12ln1+sinv1sinv]π6π3=ln(4+233)NowI=12.([21+u+u2]01J)=12.[(232)ln(4+233)]
Commented by mathmax by abdo last updated on 28/Jul/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *