Menu Close

find-1-dx-x-2-2-x-3-




Question Number 38104 by maxmathsup by imad last updated on 21/Jun/18
find  ∫_1 ^(+∞)     (dx/((x^2 +2)(√(x+3))))
find1+dx(x2+2)x+3
Answered by MJS last updated on 23/Jun/18
∫(dx/((x^2 +2)(√(x+3))))=            [t=(√(x+3)) → dx=2(√(x+3))dt]  =2∫(dt/(t^4 −6t^2 +11))=       [t^4 −6t^2 +11=0 ⇒        ⇒ t_1 =−((√2)/2)((3+(√(11)))+(−3+(√(11)))i)              t_2 =−((√2)/2)((3+(√(11)))−(−3+(√(11)))i)              t_3 =((√2)/2)((3+(√(11)))+(−3+(√(11)))i)              t_4 =((√2)/2)((3+(√(11)))−(−3+(√(11)))i)        (t−t_1 )(t−t_2 )=t^2 +(√(6+2(√(11))))t+(√(11))        (t−t_3 )(t−t_4 )=t^2 −(√(6+2(√(11))))t+(√(11))]  =2∫(dt/((t^2 −(√(6+2(√(11))))t+(√(11)))(t^2 +(√(6+2(√(11))))t+(√(11)))))=  =2∫(dt/((t^2 −at+b)(t^2 +at+b)))=  =2(∫(P_1 /(t^2 −at+b))dt+∫(P_2 /(t^2 +at+b))dt)=       [this might be hard to find:        we need P_1 (t^2 +at+b)+P_2 (t^2 −at+b)=1        set P_1 =a−t ∧ P_2 =a+t ⇒        ⇒ (a−t)(t^2 +at+b)+(a+t)(t^2 −at+b)=2ab ⇒        ⇒ P_1 =((a−t)/(2ab)); P_2 =((a+t)/(2ab))]  =(1/(ab))(−∫((t−a)/(t^2 −at+b))dt+∫((t+a)/(t^2 +at+b))dt)=       [t−a=((2t−a)/2)−(a/2); t+a=((2t+a)/2)+(a/2)]  =(1/(2ab))(−∫((2t−a)/(t^2 −at+b))dt+a∫(dt/(t^2 −at+b))+∫((2t+a)/(t^2 +at+b))dt+a∫(dt/(t^2 +at+b)))=  =(1/(2ab))(∫((2t+a)/(t^2 +at+b))dt−∫((2t−a)/(t^2 −at+b))dt)+(1/(2b))(∫(dt/(t^2 −at+b))+∫(dt/(t^2 +at+b)))=  =(1/(2ab))ln∣((t^2 +at+b)/(t^2 −at+b))∣+(1/(2b))(∫(dt/((t−(a/2))^2 +b−(a^2 /4)))+∫(dt/((t+(a/2))^2 +b−(a^2 /4))))=       [t=u(√(b−(a^2 /4)))±(a/2) ⇒ u=((t±(a/2))/( (√(b−(a^2 /4))))) → dt=(√(b−(a^2 /4)))du]  =(1/(2ab))ln∣((t^2 +at+b)/(t^2 −at+b))∣+((√(4b−a^2 ))/(4b))(∫(du_1 /(u_1 ^2 +1))+∫(du_2 /(u_2 ^2 +1)))=  =(1/(2ab))ln∣((t^2 +at+b)/(t^2 −at+b))∣+((√(4b−a^2 ))/(4b))(tan^(−1)  u_1  +tan^(−1)  u_2 )=  =(1/(2ab))ln∣((t^2 +at+b)/(t^2 −at+b))∣+((√(4b−a^2 ))/(4b))(tan^(−1) (((√(4b−a^2 ))/2)(t−(a/2)))+tan^(−1) (((√(4b−a^2 ))/2)(t+(a/2))))=  =((√(11))/(44))(√(−3+(√(11))))ln∣((x+(√(2(3+(√(11)))(x+3)))+3+(√(11)))/(x−(√(2(3+(√(11)))(x+3)))+3+(√(11))))∣+       +((√(22))/(44))(√(−3+(√(11))))(tan^(−1) (((√2)/2)((√((−3+(√(11)))(x+3)))−1)+tan^(−1) (((√2)/2)((√((−3+(√(11)))(x+3)))+1))))+C
dx(x2+2)x+3=[t=x+3dx=2x+3dt]=2dtt46t2+11=[t46t2+11=0t1=22((3+11)+(3+11)i)t2=22((3+11)(3+11)i)t3=22((3+11)+(3+11)i)t4=22((3+11)(3+11)i)(tt1)(tt2)=t2+6+211t+11(tt3)(tt4)=t26+211t+11]=2dt(t26+211t+11)(t2+6+211t+11)==2dt(t2at+b)(t2+at+b)==2(P1t2at+bdt+P2t2+at+bdt)=[thismightbehardtofind:weneedP1(t2+at+b)+P2(t2at+b)=1setP1=atP2=a+t(at)(t2+at+b)+(a+t)(t2at+b)=2abP1=at2ab;P2=a+t2ab]=1ab(tat2at+bdt+t+at2+at+bdt)=[ta=2ta2a2;t+a=2t+a2+a2]=12ab(2tat2at+bdt+adtt2at+b+2t+at2+at+bdt+adtt2+at+b)==12ab(2t+at2+at+bdt2tat2at+bdt)+12b(dtt2at+b+dtt2+at+b)==12ablnt2+at+bt2at+b+12b(dt(ta2)2+ba24+dt(t+a2)2+ba24)=[t=uba24±a2u=t±a2ba24dt=ba24du]=12ablnt2+at+bt2at+b+4ba24b(du1u12+1+du2u22+1)==12ablnt2+at+bt2at+b+4ba24b(tan1u1+tan1u2)==12ablnt2+at+bt2at+b+4ba24b(tan1(4ba22(ta2))+tan1(4ba22(t+a2)))==11443+11lnx+2(3+11)(x+3)+3+11x2(3+11)(x+3)+3+11++22443+11(tan1(22((3+11)(x+3)1)+tan1(22((3+11)(x+3)+1))))+C
Commented by abdo mathsup 649 cc last updated on 23/Jun/18
thank you sir Mjs.
thankyousirMjs.
Commented by MJS last updated on 23/Jun/18
you′re welcome as always.  I′m integral−addicted...  I didn′t solve it in [1; ∞[ because it′s got no  “nice” solution due to the logarithmic part  but it′s ≈.261683
yourewelcomeasalways.ImintegraladdictedIdidntsolveitin[1;[becauseitsgotnonicesolutionduetothelogarithmicpartbutits.261683
Commented by MJS last updated on 23/Jun/18
but in [−3; ∞[ it′s ((√(22))/(44))(√(−3+(√(11))))π
butin[3;[its22443+11π
Commented by math khazana by abdo last updated on 23/Jun/18
thank you sir...
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *