Menu Close

find-1-dx-x-2-2xcos-1-with-0-lt-lt-pi-




Question Number 31056 by abdo imad last updated on 02/Mar/18
find  ∫_1 ^(+∞)        (dx/(x^2  −2xcosα +1))  with 0<α<π .
find1+dxx22xcosα+1with0<α<π.
Commented by abdo imad last updated on 03/Mar/18
I= ∫_1 ^(+∞)   (dx/(x^2  −2xcosα +cos^2 α +sin^2 α))  =∫_1 ^(+∞)          (dx/((x−cosα)^2  +sin^2 α)) the ch. x−cosα=sinα t give  I= ∫_((1−cosα)/(sinα)) ^(+∞)        ((sinαdt)/(sin^2 α(1+t^2 )))= (1/(sinα)) ∫_(tan((α/2))) ^(+∞)   (dt/(1+t^2 ))  I= (1/(sinα)) [ arctant]_(tan((α/2))) ^(+∞)  =(1/(sinα))((π/2) −(α/2))⇒  I= ((π−α)/(2sinα)) .
I=1+dxx22xcosα+cos2α+sin2α=1+dx(xcosα)2+sin2αthech.xcosα=sinαtgiveI=1cosαsinα+sinαdtsin2α(1+t2)=1sinαtan(α2)+dt1+t2I=1sinα[arctant]tan(α2)+=1sinα(π2α2)I=πα2sinα.

Leave a Reply

Your email address will not be published. Required fields are marked *