find-1-e-sin-ln-x-dx- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 32305 by abdo imad last updated on 22/Mar/18 find∫1esin(ln(x))dx. Commented by abdo imad last updated on 24/Mar/18 letusethech.lnx=t⇒I=∫01sintetdtandI=Im(∫01eit+tdt)=Im(∫01e(1+i)tdt)but∫01e(1+i)tdt=11+i[e(1+i)t]01=11+i(e1+i−1)=1−i2(e(cos(1)+isin(1)−1)=ecos(1)+iesin(1)−1−iecos(1)+sin(1)+i2=ecos(1)+sin(1)−1+i(esin(1)−ecos(1)+1)2I=12(esin(1)−ecos(1)+1). Answered by sma3l2996 last updated on 23/Mar/18 u=sin(lnx)⇒u′=1xcos(lnx)v′=1⇒v=xso∫1esin(lnx)dx=[xsin(lnx)]1e−∫1ecos(lnx)dx=esin(1)−∫1ecos(lnx)dxu=cos(lnx)⇒u′=−1xsin(lnx)v′=1⇒v=x∫1esin(lnx)dx=e.sin(1)−[xcos(lnx)]1e−∫1esin(lnx)dx2∫1esin(lnx)dx=e.sin(1)−e.cos(1)+1∫1esin(lnx)dx=e2(sin1−cos1)+12 Commented by abdo imad last updated on 24/Mar/18 correctanswerthanks… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-lim-x-e-x-2-0-x-e-t-2-dt-Next Next post: lim-0-arc-sin-k-cos-1-k-2-arc-sin-k-1-k-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.