Menu Close

find-1-e-sin-ln-x-dx-




Question Number 32305 by abdo imad last updated on 22/Mar/18
find ∫_1 ^e  sin(ln(x))dx .
find1esin(ln(x))dx.
Commented by abdo imad last updated on 24/Mar/18
let use the ch.lnx=t ⇒ I = ∫_0 ^1  sint e^t  dt  and   I =Im (∫_0 ^1   e^(it +t) dt) =Im( ∫_0 ^1  e^((1+i)t) dt) but  ∫_0 ^1  e^((1+i)t) dt = (1/(1+i))[  e^((1+i)t) ]_0 ^1  = (1/(1+i))( e^(1+i)  −1)  =((1−i)/2)( e( cos(1) +isin(1) −1)  =((e cos(1) +ie sin(1) −1 −ie cos(1) +sin(1) +i)/2)  =((e cos(1) +sin(1)−1 +i(e sin(1) −e cos(1) +1))/2)  I = (1/2)( e sin(1)−e cos(1) +1) .
letusethech.lnx=tI=01sintetdtandI=Im(01eit+tdt)=Im(01e(1+i)tdt)but01e(1+i)tdt=11+i[e(1+i)t]01=11+i(e1+i1)=1i2(e(cos(1)+isin(1)1)=ecos(1)+iesin(1)1iecos(1)+sin(1)+i2=ecos(1)+sin(1)1+i(esin(1)ecos(1)+1)2I=12(esin(1)ecos(1)+1).
Answered by sma3l2996 last updated on 23/Mar/18
u=sin(lnx)⇒u′=(1/x)cos(lnx)  v′=1⇒v=x  so  ∫_1 ^e sin(lnx)dx=[xsin(lnx)]_1 ^e −∫_1 ^e cos(lnx)dx  =esin(1)−∫_1 ^e cos(lnx)dx  u=cos(lnx)⇒u′=−(1/x)sin(lnx)  v′=1⇒v=x  ∫_1 ^e sin(lnx)dx=e.sin(1)−[xcos(lnx)]_1 ^e −∫_1 ^e sin(lnx)dx  2∫_1 ^e sin(lnx)dx=e.sin(1)−e.cos(1)+1  ∫_1 ^e sin(lnx)dx=(e/2)(sin1−cos1)+(1/2)
u=sin(lnx)u=1xcos(lnx)v=1v=xso1esin(lnx)dx=[xsin(lnx)]1e1ecos(lnx)dx=esin(1)1ecos(lnx)dxu=cos(lnx)u=1xsin(lnx)v=1v=x1esin(lnx)dx=e.sin(1)[xcos(lnx)]1e1esin(lnx)dx21esin(lnx)dx=e.sin(1)e.cos(1)+11esin(lnx)dx=e2(sin1cos1)+12
Commented by abdo imad last updated on 24/Mar/18
correct answer thanks...
correctanswerthanks

Leave a Reply

Your email address will not be published. Required fields are marked *