Menu Close

Find-1-ln-x-x-4-x-2-1-dx-




Question Number 160560 by HongKing last updated on 01/Dec/21
Find:  𝛀 =∫_( 1) ^( ∞)  ((ln(x))/(x^4  + x^2  + 1)) dx = ?
Find:Ω=∫∞1ln(x)x4+x2+1dx=?
Answered by Ar Brandon last updated on 02/Dec/21
Ξ©=∫_1 ^∞ ((lnx)/(x^4 +x^2 +1))dx=∫_1 ^∞ ((1βˆ’x^2 )/(1βˆ’x^6 ))lnxdx, x=u^(βˆ’1) β‡’dx=βˆ’u^(βˆ’2) du      =βˆ’βˆ«_0 ^1 ((u^4 βˆ’u^2 )/(u^6 βˆ’1))lnudu=(1/(36))∫_0 ^1 ((t^(βˆ’(1/6)) βˆ’t^(βˆ’(3/6)) )/(1βˆ’t))lntdt      =(1/(36))(Οˆβ€²((1/2))βˆ’Οˆβ€²((5/6)))=(1/(36))(Ξ£_(n=0) ^∞ (1/((n+(1/2))^2 ))βˆ’Ξ£_(n=0) ^∞ (1/((n+(5/6))^2 )))
Ξ©=∫1∞lnxx4+x2+1dx=∫1∞1βˆ’x21βˆ’x6lnxdx,x=uβˆ’1β‡’dx=βˆ’uβˆ’2du=βˆ’βˆ«01u4βˆ’u2u6βˆ’1lnudu=136∫01tβˆ’16βˆ’tβˆ’361βˆ’tlntdt=136(Οˆβ€²(12)βˆ’Οˆβ€²(56))=136(βˆ‘βˆžn=01(n+12)2βˆ’βˆ‘βˆžn=01(n+56)2)
Commented by HongKing last updated on 02/Dec/21
thank you so much my dear Sir  answer:  (Ο€^2 /(72)) - (1/(36)) ψ^((1))  ((5/6))
thankyousomuchmydearSiranswer:Ο€272βˆ’136ψ(1)(56)
Commented by Ar Brandon last updated on 02/Dec/21
(1/(36))Ξ£_(n=0) ^∞ (1/((n+(1/2))^2 ))=(1/9)Ξ£_(n=0) ^∞ (1/((2n+1)^2 ))  =(1/9)Γ—(3/4)ΞΆ(2)=(1/9)Γ—(3/4)Γ—(Ο€^2 /6)=(Ο€^2 /(72))
136βˆ‘βˆžn=01(n+12)2=19βˆ‘βˆžn=01(2n+1)2=19Γ—34ΞΆ(2)=19Γ—34Γ—Ο€26=Ο€272
Commented by HongKing last updated on 02/Dec/21
Thank you my dear Sir
ThankyoumydearSir

Leave a Reply

Your email address will not be published. Required fields are marked *