Menu Close

find-1-t-t-t-p-dt-interms-of-p-with-p-gt-0-




Question Number 54367 by maxmathsup by imad last updated on 02/Feb/19
find ∫_1 ^(+∞)  (([t])/t) t^(−p) dt interms of ξ(p) with p>0 .
find1+[t]ttpdtintermsofξ(p)withp>0.
Commented by maxmathsup by imad last updated on 04/Feb/19
let A_p =∫_1 ^(+∞)    (([t])/t) t^(−p)  dt ⇒A_p =Σ_(n=1) ^(+∞)   ∫_n ^(n+1)    (n/t) t^(−p)  dt  =Σ_(n=1) ^∞  n ∫_n ^(n+1)  t^(−p−1) dt =Σ_(n=1) ^∞  n[(1/(−p)) t^(−p) ]_n ^(n+1)   =Σ_(n=1) ^∞  (−(n/p)){ (1/((n+1)^p )) −(1/n^p )} =(1/p){Σ_(n=1) ^∞   (1/n^(p−1) ) −Σ_(n=1) ^∞  (n/((n+1)^p ))}  =(1/p){ Σ_(n=1) ^∞   (1/n^(p−1) ) −Σ_(n=2) ^∞  ((n−1)/n^p )} =(1/p){ 1+Σ_(n=2) ^∞   (1/n^p )} =((ξ(p))/p) ⇒  A_p =((ξ(p))/p)  .
letAp=1+[t]ttpdtAp=n=1+nn+1nttpdt=n=1nnn+1tp1dt=n=1n[1ptp]nn+1=n=1(np){1(n+1)p1np}=1p{n=11np1n=1n(n+1)p}=1p{n=11np1n=2n1np}=1p{1+n=21np}=ξ(p)pAp=ξ(p)p.
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
∫_1 ^∞ (([t])/t)t^(−p) dt  ∫_1 ^2 1×t^(−p−1) dt+∫_2 ^3 2×t^(−p−1) dt+∫_3 ^4 3×t^(−p−1) dt...  1×((t^(−p) /(−p)))_1 ^2 +2×((t^(−p) /(−p)))_2 ^3 +3×((t^(−p) /(−p)))_3 ^4 +...  =((1/(−p)))[((1/2^p )−(1/1^p ))+2×((1/3^p )−(1/2^p ))+3×((1/4^p )−(1/3^p ))+...]  =((1/p))((1/1^p )+(1/2^p )+(1/3^p )+(1/4^p )+...∞)
1[t]ttpdt121×tp1dt+232×tp1dt+343×tp1dt1×(tpp)12+2×(tpp)23+3×(tpp)34+=(1p)[(12p11p)+2×(13p12p)+3×(14p13p)+]=(1p)(11p+12p+13p+14p+)

Leave a Reply

Your email address will not be published. Required fields are marked *