Menu Close

find-2-3-x-1-x-1-x-dx-




Question Number 30182 by abdo imad last updated on 17/Feb/18
find ∫_2 ^3    ((√(x+1))/(x(√(1−x))))dx .
find23x+1x1xdx.
Commented by abdo imad last updated on 21/Feb/18
let put (√((x+1)/(x−1))) =t ⇔((x+1)/(x−1)) =t^2   ⇔x+1=−t^2  +t^2 x⇔  (1−t^2 )x=−t^2 −1 ⇔x= ((−t^2 −1)/(−t^2 +1))=((t^2  +1)/(t^2 −1))=1+(2/(t^2 −1))⇒  (dx/dt) =((−4t)/((t^2 −1)^2 )) ⇒I= ∫_(√3) ^(√2)    t ((t^2 −1)/(t^2 +1)) ((−4t)/((t^2 −1)^2 ))dt  =4 ∫_(√2) ^(√3)    (t^2 /((t^2 +1)(t^2 −1)))dt= 4 ∫_(√2) ^(√3)   ((t^2 −1+1)/((t^2 +1)(t^2 −1)))dt  =4 ∫_(√2) ^(√3)    (dt/(t^2 +1)) +4 ∫_(√2) ^(√3)   (dt/((t^2 +1)(t^2 −1))) we have  ∫_(√2) ^(√3)   (dt/(1+t^2 ))=arctan((√3)) −arctan((√2)) and  ∫_(√2) ^(√3)      (dt/((t^2 +1)(t^2 −1)))=(1/2)∫_(√2) ^(√3) ( (1/(t^2 −1)) −(1/(t^2 +1)))dt  =(1/2) ∫_(√2) ^(√3)   (dt/(t^2 −1)) −(1/2) (arctan((√(3))) −arctan(√2)))  =(1/2)∫_(√2) ^(√3) ((1/(t−1)) −(1/(t+1)))dt −(1/2)(....)  =(1/2)[ln∣((t−1)/(t+1))∣]_(√2) ^(√3)  −(1/2)(...) ⇒  I=4(artan((√3))−arctan((√2))) +2 ∫_(√2) ^(√3)   (dt/(t^2 −1))dt   −2(arctan((√3))−arctan((√2)))  =2(arctan((√3))−arctan((√2))) +ln∣(((√3) −1)/( (√3)+1))∣−ln∣(((√2) −1)/( (√2) +1))∣  .
letputx+1x1=tx+1x1=t2x+1=t2+t2x(1t2)x=t21x=t21t2+1=t2+1t21=1+2t21dxdt=4t(t21)2I=32tt21t2+14t(t21)2dt=423t2(t2+1)(t21)dt=423t21+1(t2+1)(t21)dt=423dtt2+1+423dt(t2+1)(t21)wehave23dt1+t2=arctan(3)arctan(2)and23dt(t2+1)(t21)=1223(1t211t2+1)dt=1223dtt2112(arctan(3)arctan2))=1223(1t11t+1)dt12(.)=12[lnt1t+1]2312()I=4(artan(3)arctan(2))+223dtt21dt2(arctan(3)arctan(2))=2(arctan(3)arctan(2))+ln313+1ln212+1.
Commented by abdo imad last updated on 21/Feb/18
forgive... the Q is find ∫_2 ^3    ((√(x+1))/(x(√(x−1)))) dx .
forgivetheQisfind23x+1xx1dx.

Leave a Reply

Your email address will not be published. Required fields are marked *