Menu Close

find-2-5-dt-t-t-2-1-




Question Number 31503 by abdo imad last updated on 09/Mar/18
find  ∫_2 ^(√5)      (dt/(t(√(t^2 −1)))) .
find25dttt21.
Commented by abdo imad last updated on 16/Mar/18
ch. t=ch(x) give  I = ∫_(argch(2)) ^(argch((√5)))    ((shxdx)/(ch(x)sh(x)))  = ∫_(argch(2)) ^(argch((√5)))       (dx/((e^x  +e^(−x) )/2)) = 2 ∫_(argch2)) ^(argch((√5)))   (dx/(e^x  +e^(−x) ))  let use the ch. e^x  =t ⇒ I = 2 ∫_e^(argch(2))  ^e^(argch((√5)))        (dt/(t(t +(1/t))))  = 2 ∫_e^(argch(2))  ^e^(argch((√5) ))      (dt/(t^2  +1)) = 2 [ arctan(t)]_e^(argch(2))  ^e^(argch((√5)))    but we know  that argch(x)=ln(x +(√( x^2  −1_  )))⇒  argch(2)=ln(2+(√3)) and argch((√5))=ln((√5) +2)  I= 2[arctan(t)]_(2+(√3)) ^(2+(√5))   =2( arctan(2+(√5))−arctan(2+(√3)))
ch.t=ch(x)giveI=argch(2)argch(5)shxdxch(x)sh(x)=argch(2)argch(5)dxex+ex2=2argch2)argch(5)dxex+exletusethech.ex=tI=2eargch(2)eargch(5)dtt(t+1t)=2eargch(2)eargch(5)dtt2+1=2[arctan(t)]eargch(2)eargch(5)butweknowthatargch(x)=ln(x+x21)argch(2)=ln(2+3)andargch(5)=ln(5+2)I=2[arctan(t)]2+32+5=2(arctan(2+5)arctan(2+3))

Leave a Reply

Your email address will not be published. Required fields are marked *