Menu Close

find-2-tan-2-t-dt-




Question Number 40830 by math khazana by abdo last updated on 28/Jul/18
find ∫ (√(2+tan^2 t))dt
$${find}\:\int\:\sqrt{\mathrm{2}+{tan}^{\mathrm{2}} {t}}{dt} \\ $$
Commented by maxmathsup by imad last updated on 31/Jul/18
let I  = ∫ (√(2+tan^2 t))dt   changement tant =(√2) sh(x)⇒t =arctan((√2)shx)  ⇒dt =(((√2)ch(x))/(1+2sh^2 x))dx  I = ∫ (√(2 +2sh^2 x)) (((√2)ch(x))/(1+2sh^2 x))dx  = ∫  ((2ch^2 x)/(1+2sh^2 ))dx  =  ∫    ((1+ch(2x))/(1+ch(2x)−1))dx = ∫    ((ch(2x) +1)/(ch(2x)))dx = x +∫   (dx/(ch(2x))) but  ∫   (dx/(ch(2x))) = ∫    ((2dx)/(e^(2x)  +e^(−2x) )) =_(e^x =t)     ∫  ((2  )/(t^2  +t^(−2) )) (dt/t)  = ∫   ((2dt)/(t^3  +(1/t))) = ∫   ((2tdt)/(t^4  +1))  =_(t^2 =u)  ∫  (du/(1+u^2 )) =arctan(u) +c  =arctan(t^2 )+c  =actan(e^(2x) )+c  but x =argsh(((tant)/( (√2))))  =ln(((tant)/( (√2))) +(√(1+((tan^2 t)/2)))))  I  =argsh(((tant)/( (√2))))  +arctan( {((tant)/( (√2)))+(√(1+((tan^2 t)/2)))}^2 ) +c
$${let}\:{I}\:\:=\:\int\:\sqrt{\mathrm{2}+{tan}^{\mathrm{2}} {t}}{dt}\:\:\:{changement}\:{tant}\:=\sqrt{\mathrm{2}}\:{sh}\left({x}\right)\Rightarrow{t}\:={arctan}\left(\sqrt{\mathrm{2}}{shx}\right) \\ $$$$\Rightarrow{dt}\:=\frac{\sqrt{\mathrm{2}}{ch}\left({x}\right)}{\mathrm{1}+\mathrm{2}{sh}^{\mathrm{2}} {x}}{dx} \\ $$$${I}\:=\:\int\:\sqrt{\mathrm{2}\:+\mathrm{2}{sh}^{\mathrm{2}} {x}}\:\frac{\sqrt{\mathrm{2}}{ch}\left({x}\right)}{\mathrm{1}+\mathrm{2}{sh}^{\mathrm{2}} {x}}{dx}\:\:=\:\int\:\:\frac{\mathrm{2}{ch}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}{sh}^{\mathrm{2}} }{dx} \\ $$$$=\:\:\int\:\:\:\:\frac{\mathrm{1}+{ch}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{ch}\left(\mathrm{2}{x}\right)−\mathrm{1}}{dx}\:=\:\int\:\:\:\:\frac{{ch}\left(\mathrm{2}{x}\right)\:+\mathrm{1}}{{ch}\left(\mathrm{2}{x}\right)}{dx}\:=\:{x}\:+\int\:\:\:\frac{{dx}}{{ch}\left(\mathrm{2}{x}\right)}\:{but} \\ $$$$\int\:\:\:\frac{{dx}}{{ch}\left(\mathrm{2}{x}\right)}\:=\:\int\:\:\:\:\frac{\mathrm{2}{dx}}{{e}^{\mathrm{2}{x}} \:+{e}^{−\mathrm{2}{x}} }\:=_{{e}^{{x}} ={t}} \:\:\:\:\int\:\:\frac{\mathrm{2}\:\:}{{t}^{\mathrm{2}} \:+{t}^{−\mathrm{2}} }\:\frac{{dt}}{{t}} \\ $$$$=\:\int\:\:\:\frac{\mathrm{2}{dt}}{{t}^{\mathrm{3}} \:+\frac{\mathrm{1}}{{t}}}\:=\:\int\:\:\:\frac{\mathrm{2}{tdt}}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:\:=_{{t}^{\mathrm{2}} ={u}} \:\int\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:={arctan}\left({u}\right)\:+{c} \\ $$$$={arctan}\left({t}^{\mathrm{2}} \right)+{c}\:\:={actan}\left({e}^{\mathrm{2}{x}} \right)+{c}\:\:{but}\:{x}\:={argsh}\left(\frac{{tant}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$={ln}\left(\frac{{tant}}{\:\sqrt{\mathrm{2}}}\:+\sqrt{\left.\mathrm{1}+\frac{{tan}^{\mathrm{2}} {t}}{\mathrm{2}}\right)}\right) \\ $$$${I}\:\:={argsh}\left(\frac{{tant}}{\:\sqrt{\mathrm{2}}}\right)\:\:+{arctan}\left(\:\left\{\frac{{tant}}{\:\sqrt{\mathrm{2}}}+\sqrt{\mathrm{1}+\frac{{tan}^{\mathrm{2}} {t}}{\mathrm{2}}}\right\}^{\mathrm{2}} \right)\:+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *