Menu Close

find-2-tan-2-t-dt-




Question Number 40830 by math khazana by abdo last updated on 28/Jul/18
find ∫ (√(2+tan^2 t))dt
find2+tan2tdt
Commented by maxmathsup by imad last updated on 31/Jul/18
let I  = ∫ (√(2+tan^2 t))dt   changement tant =(√2) sh(x)⇒t =arctan((√2)shx)  ⇒dt =(((√2)ch(x))/(1+2sh^2 x))dx  I = ∫ (√(2 +2sh^2 x)) (((√2)ch(x))/(1+2sh^2 x))dx  = ∫  ((2ch^2 x)/(1+2sh^2 ))dx  =  ∫    ((1+ch(2x))/(1+ch(2x)−1))dx = ∫    ((ch(2x) +1)/(ch(2x)))dx = x +∫   (dx/(ch(2x))) but  ∫   (dx/(ch(2x))) = ∫    ((2dx)/(e^(2x)  +e^(−2x) )) =_(e^x =t)     ∫  ((2  )/(t^2  +t^(−2) )) (dt/t)  = ∫   ((2dt)/(t^3  +(1/t))) = ∫   ((2tdt)/(t^4  +1))  =_(t^2 =u)  ∫  (du/(1+u^2 )) =arctan(u) +c  =arctan(t^2 )+c  =actan(e^(2x) )+c  but x =argsh(((tant)/( (√2))))  =ln(((tant)/( (√2))) +(√(1+((tan^2 t)/2)))))  I  =argsh(((tant)/( (√2))))  +arctan( {((tant)/( (√2)))+(√(1+((tan^2 t)/2)))}^2 ) +c
letI=2+tan2tdtchangementtant=2sh(x)t=arctan(2shx)dt=2ch(x)1+2sh2xdxI=2+2sh2x2ch(x)1+2sh2xdx=2ch2x1+2sh2dx=1+ch(2x)1+ch(2x)1dx=ch(2x)+1ch(2x)dx=x+dxch(2x)butdxch(2x)=2dxe2x+e2x=ex=t2t2+t2dtt=2dtt3+1t=2tdtt4+1=t2=udu1+u2=arctan(u)+c=arctan(t2)+c=actan(e2x)+cbutx=argsh(tant2)=ln(tant2+1+tan2t2))I=argsh(tant2)+arctan({tant2+1+tan2t2}2)+c

Leave a Reply

Your email address will not be published. Required fields are marked *