Question Number 40830 by math khazana by abdo last updated on 28/Jul/18
$${find}\:\int\:\sqrt{\mathrm{2}+{tan}^{\mathrm{2}} {t}}{dt} \\ $$
Commented by maxmathsup by imad last updated on 31/Jul/18
$${let}\:{I}\:\:=\:\int\:\sqrt{\mathrm{2}+{tan}^{\mathrm{2}} {t}}{dt}\:\:\:{changement}\:{tant}\:=\sqrt{\mathrm{2}}\:{sh}\left({x}\right)\Rightarrow{t}\:={arctan}\left(\sqrt{\mathrm{2}}{shx}\right) \\ $$$$\Rightarrow{dt}\:=\frac{\sqrt{\mathrm{2}}{ch}\left({x}\right)}{\mathrm{1}+\mathrm{2}{sh}^{\mathrm{2}} {x}}{dx} \\ $$$${I}\:=\:\int\:\sqrt{\mathrm{2}\:+\mathrm{2}{sh}^{\mathrm{2}} {x}}\:\frac{\sqrt{\mathrm{2}}{ch}\left({x}\right)}{\mathrm{1}+\mathrm{2}{sh}^{\mathrm{2}} {x}}{dx}\:\:=\:\int\:\:\frac{\mathrm{2}{ch}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}{sh}^{\mathrm{2}} }{dx} \\ $$$$=\:\:\int\:\:\:\:\frac{\mathrm{1}+{ch}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{ch}\left(\mathrm{2}{x}\right)−\mathrm{1}}{dx}\:=\:\int\:\:\:\:\frac{{ch}\left(\mathrm{2}{x}\right)\:+\mathrm{1}}{{ch}\left(\mathrm{2}{x}\right)}{dx}\:=\:{x}\:+\int\:\:\:\frac{{dx}}{{ch}\left(\mathrm{2}{x}\right)}\:{but} \\ $$$$\int\:\:\:\frac{{dx}}{{ch}\left(\mathrm{2}{x}\right)}\:=\:\int\:\:\:\:\frac{\mathrm{2}{dx}}{{e}^{\mathrm{2}{x}} \:+{e}^{−\mathrm{2}{x}} }\:=_{{e}^{{x}} ={t}} \:\:\:\:\int\:\:\frac{\mathrm{2}\:\:}{{t}^{\mathrm{2}} \:+{t}^{−\mathrm{2}} }\:\frac{{dt}}{{t}} \\ $$$$=\:\int\:\:\:\frac{\mathrm{2}{dt}}{{t}^{\mathrm{3}} \:+\frac{\mathrm{1}}{{t}}}\:=\:\int\:\:\:\frac{\mathrm{2}{tdt}}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:\:=_{{t}^{\mathrm{2}} ={u}} \:\int\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:={arctan}\left({u}\right)\:+{c} \\ $$$$={arctan}\left({t}^{\mathrm{2}} \right)+{c}\:\:={actan}\left({e}^{\mathrm{2}{x}} \right)+{c}\:\:{but}\:{x}\:={argsh}\left(\frac{{tant}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$={ln}\left(\frac{{tant}}{\:\sqrt{\mathrm{2}}}\:+\sqrt{\left.\mathrm{1}+\frac{{tan}^{\mathrm{2}} {t}}{\mathrm{2}}\right)}\right) \\ $$$${I}\:\:={argsh}\left(\frac{{tant}}{\:\sqrt{\mathrm{2}}}\right)\:\:+{arctan}\left(\:\left\{\frac{{tant}}{\:\sqrt{\mathrm{2}}}+\sqrt{\mathrm{1}+\frac{{tan}^{\mathrm{2}} {t}}{\mathrm{2}}}\right\}^{\mathrm{2}} \right)\:+{c} \\ $$