Menu Close

find-2x-3-x-2-x-3-8-dx-2-calculate-1-2x-3-x-2-x-3-8-dx-




Question Number 39017 by maxmathsup by imad last updated on 01/Jul/18
find   ∫  ((−2x+3)/(x^2 ( x^3  +8)))dx  2) calculate  ∫_1 ^(+∞)    ((−2x+3)/(x^2 (x^3  +8)))dx
find2x+3x2(x3+8)dx2)calculate1+2x+3x2(x3+8)dx
Commented by math khazana by abdo last updated on 08/Jul/18
let I = ∫    ((−2x+3)/(x^2 (x^3  +8))) d x   changement x=2t give  I = ∫   ((−4t +3)/(4t^2 (8t^3  +8))) 2dt  = −(1/(16))  ∫  ((4t−3)/(t^2 (t^3  +1)))dt  let decompose  F(t)= ((4t−3)/(t^2 (t^3 +1)))  F(t) = ((4t−3)/(t^2 (t+1)(t^2  −t +1))) =(a/t) +(b/t^2 ) +(c/(t+1)) +((dt +e)/(t^2  −t+1))  b =lim_(t→0) t^2  F(t)= −3  c=lim_(t→−1) (t+1)F(t)= ((−7)/3) ⇒  F(t)= (a/t) −(3/t^2 ) −(7/(3(t+1))) +((dt +e)/(t^2  −t +1))  lim_(t→+∞) t F(t) =0 =a −(7/3)  +d ⇒ d=−a +(7/3)  F(t) = (a/t) −(3/t^2 ) −(7/(3(t+1)))  +(((−a+(7/3))t +e)/(t^2  −t +1))  F(1) =(1/2) = a−3 −(7/6)  −a  +(7/3) +e ⇒  (1/2) = (7/6) +e ⇒e=(1/2) −(7/6) =−(4/6) =((−2)/3) ⇒  F(t)= (a/t) −(3/t^2 ) −(7/(3(t+1))) + (((−a +(7/3))t−(2/3))/(t^2  −t +1))  F(2)= (5/(12(3))) = (a/2) −(3/4) −(7/9) +(((−a +(7/3))2−(2/3))/3)  = (a/2) −((27+28)/(36)) −((2a)/3)  +((14)/9) −(2/9)  =(a/2) −((55)/(36)) −((2a)/3)  +(4/3) =−(a/6)  +(4/3) −((55)/(36)) ⇒  5 =−6a  +36 −55 ⇒6a =36 −60 =24 ⇒a=(1/4)  F(t)= (1/(4t)) −(3/t^2 ) −(7/(3(t+1))) +((((25)/(12))t −(2/3))/(t^2  −t +1)) ⇒  ∫  F(t)dt = (1/4)ln∣t∣ +(3/t) −(7/3)ln∣t+1∣ +((25)/(12)) ∫   ((tdt)/(t^2  −t+1))  −(2/3) ∫   (dt/(t^2  −t +1))  but  ((25)/(12)) ∫    ((tdt)/(t^2  −t +1)) = ((25)/(24)) ∫ ((2t −1 +3)/(t^2  −t +1))dt  =((25)/(24))ln∣t^2  −t +1∣  +((25)/8) ∫    (dt/(t^2  −t +1)) and  (−(2/3) +((25)/8)) ∫    (dt/(t^2  −t +1)) =(3/8) ∫  (dt/(t^2  −t +1))  =(3/8) ∫   (dt/((t−(1/2))^2  +(3/4))) =_(t−(1/2)=((√3)/2)u)    (3/8) (4/3)∫  (1/(1+u^2 ))du  =(1/2) arctan(((2t−1)/( (√3)))) ⇒  ∫F(x)dx =(1/4)ln∣t∣ +(3/t) −(7/3)ln∣t+1∣+((25)/(24))ln∣t^2  −t+1∣  +(1/2)arctan(((2t−1)/( (√3))))+c....
letI=2x+3x2(x3+8)dxchangementx=2tgiveI=4t+34t2(8t3+8)2dt=1164t3t2(t3+1)dtletdecomposeF(t)=4t3t2(t3+1)F(t)=4t3t2(t+1)(t2t+1)=at+bt2+ct+1+dt+et2t+1b=limt0t2F(t)=3c=limt1(t+1)F(t)=73F(t)=at3t273(t+1)+dt+et2t+1limt+tF(t)=0=a73+dd=a+73F(t)=at3t273(t+1)+(a+73)t+et2t+1F(1)=12=a376a+73+e12=76+ee=1276=46=23F(t)=at3t273(t+1)+(a+73)t23t2t+1F(2)=512(3)=a23479+(a+73)2233=a227+28362a3+14929=a255362a3+43=a6+4355365=6a+36556a=3660=24a=14F(t)=14t3t273(t+1)+2512t23t2t+1F(t)dt=14lnt+3t73lnt+1+2512tdtt2t+123dtt2t+1but2512tdtt2t+1=25242t1+3t2t+1dt=2524lnt2t+1+258dtt2t+1and(23+258)dtt2t+1=38dtt2t+1=38dt(t12)2+34=t12=32u384311+u2du=12arctan(2t13)F(x)dx=14lnt+3t73lnt+1+2524lnt2t+1+12arctan(2t13)+c.

Leave a Reply

Your email address will not be published. Required fields are marked *