find-2x-3-x-2-x-3-8-dx-2-calculate-1-2x-3-x-2-x-3-8-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 39017 by maxmathsup by imad last updated on 01/Jul/18 find∫−2x+3x2(x3+8)dx2)calculate∫1+∞−2x+3x2(x3+8)dx Commented by math khazana by abdo last updated on 08/Jul/18 letI=∫−2x+3x2(x3+8)dxchangementx=2tgiveI=∫−4t+34t2(8t3+8)2dt=−116∫4t−3t2(t3+1)dtletdecomposeF(t)=4t−3t2(t3+1)F(t)=4t−3t2(t+1)(t2−t+1)=at+bt2+ct+1+dt+et2−t+1b=limt→0t2F(t)=−3c=limt→−1(t+1)F(t)=−73⇒F(t)=at−3t2−73(t+1)+dt+et2−t+1limt→+∞tF(t)=0=a−73+d⇒d=−a+73F(t)=at−3t2−73(t+1)+(−a+73)t+et2−t+1F(1)=12=a−3−76−a+73+e⇒12=76+e⇒e=12−76=−46=−23⇒F(t)=at−3t2−73(t+1)+(−a+73)t−23t2−t+1F(2)=512(3)=a2−34−79+(−a+73)2−233=a2−27+2836−2a3+149−29=a2−5536−2a3+43=−a6+43−5536⇒5=−6a+36−55⇒6a=36−60=24⇒a=14F(t)=14t−3t2−73(t+1)+2512t−23t2−t+1⇒∫F(t)dt=14ln∣t∣+3t−73ln∣t+1∣+2512∫tdtt2−t+1−23∫dtt2−t+1but2512∫tdtt2−t+1=2524∫2t−1+3t2−t+1dt=2524ln∣t2−t+1∣+258∫dtt2−t+1and(−23+258)∫dtt2−t+1=38∫dtt2−t+1=38∫dt(t−12)2+34=t−12=32u3843∫11+u2du=12arctan(2t−13)⇒∫F(x)dx=14ln∣t∣+3t−73ln∣t+1∣+2524ln∣t2−t+1∣+12arctan(2t−13)+c…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-pi-sin-nx-cosx-dx-with-n-from-N-Next Next post: find-nature-of-n-0-1-x-2-cos-n-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.