Menu Close

Find-3-2-3-2-3-2-




Question Number 183342 by Shrinava last updated on 25/Dec/22
Find:     3 − (2/(3 − (2/(3 − (2/(...)))))) = ?
Find:323232=?
Answered by Red1ight last updated on 25/Dec/22
3−(2/x)=x  x^2 −3x+2=0  x=((3±(√(9−8)))/2)  x=2,x=1
32x=xx23x+2=0x=3±982x=2,x=1
Commented by mr W last updated on 25/Dec/22
3−(2/(3−(2/(3−(2/(...))))))=1  3−(2/(3−(2/(3−(2/(...))))))=2  3−(2/(3−(2/(3−(2/(...))))))=3−(2/(3−(2/(3−(2/(...))))))  ⇒1=2 ?
323232=1323232=2323232=3232321=2?
Answered by Frix last updated on 25/Dec/22
a_1 ∈R\{0}  a_(n+1) =3−(2/a_n )  a_∞ = { ((1; a_1 =1)),((2; a_1 ≠1)) :}  Because we cannot forward calculate  x=3−(2/(3−(2/(3−(2/(...))))))=a_∞  we cannot decide  whether x=1 or x=2
a1R{0}an+1=32ana={1;a1=12;a11Becausewecannotforwardcalculatex=323232=awecannotdecidewhetherx=1orx=2
Commented by Shrinava last updated on 25/Dec/22
Answer: 2
Answer:2
Commented by Frix last updated on 25/Dec/22
Then try to prove x≠1
Thentrytoprovex1
Answered by mahdipoor last updated on 25/Dec/22
A_1 =3−(2/i_1 )=((3i_1 −2)/i_1 ) ⇒i_1 =3−(2/i_2 ) ⇒i_1 i_2 =3i_2 −2  A_2 =((3i_1 i_2 −2i_2 )/(i_1 i_2 ))=((7i_2 −6)/(3i_2 −2))  ⇒ i_2 =3−(2/i_3 ) ⇒  A_3 =((7i_2 i_3 −6i_3 )/(3i_2 i_3 −i_3 ))=((15i_3 −14)/(7i_3 −6))  ⇒A_n =((ai_n −b)/(ci_n −d))  ⇒ A_(n+1) =(((3a−b)i_(n+1) −2a)/(ai_(n+1) −b))  a_1 =k , b_1 =k−1  ⇒ a_2 =2k+1 , b_2 =2k  a_3 =4k+3 , b_3 =4k+2 ⇒ a_4 =8k+7 , b_4 =8k+6   ⇒⇒  a_n =2^(n−1) k+(2^(n−1) −1)       b_n =a_n −1  ⇒⇒  k=3  A_n =(((2^(n+1) −1)i−(2^(n+1) −2))/((2^n −1)i−(2^n −2)))  lim A_n    n→∞ =(((2−(1/2^n ))i−(2−(2/2^n )))/((1−(1/2^n ))i−(1−(2/2^n ))))=  ((2i−2)/(i−1))=2=3−(2/(3−(2/(3−(2/(...))))))     (i≠∞)
A1=32i1=3i12i1i1=32i2i1i2=3i22A2=3i1i22i2i1i2=7i263i22i2=32i3A3=7i2i36i33i2i3i3=15i3147i36An=ainbcindAn+1=(3ab)in+12aain+1ba1=k,b1=k1a2=2k+1,b2=2ka3=4k+3,b3=4k+2a4=8k+7,b4=8k+6⇒⇒an=2n1k+(2n11)bn=an1⇒⇒k=3An=(2n+11)i(2n+12)(2n1)i(2n2)limAnn=(212n)i(222n)(112n)i(122n)=2i2i1=2=323232(i)
Commented by Frix last updated on 25/Dec/22
A_n =(((2^(n+1) −1)i−(2^(n+1) −2))/((2^n −1)i−(2^n −2)))=  =2+((i−2)/((2^(n+1) −1)i−2(2^n −1)))  ⇒  i=1 ⇒ A_n =1∀n∈N  i=2 ⇒ A_n =2∀n∈N  i≠1∧i≠2 ⇒ lim_(n→∞)  A_n  =2  As you can see I′m still not convinced.
An=(2n+11)i(2n+12)(2n1)i(2n2)==2+i2(2n+11)i2(2n1)i=1An=1nNi=2An=2nNi1i2limnAn=2AsyoucanseeImstillnotconvinced.
Commented by Frix last updated on 25/Dec/22
I don′t think numbers of the shape  x=m+(n/(m+(n/(m+(n/(...)))))) with m, n ∈Z  can generally be given a value. We can  always solve for x∈C:  x=m+(n/x) ⇒ x=((m±(√(m^2 +4n)))/2)  But how to prove the value of this example?  x=3−(3/(3−(3/(3−(3/(...))))))=^(???) (3/2)±((√3)/2)i  You tell me adding, substracting, dividing  by real numbers gives complex numbers?
Idontthinknumbersoftheshapex=m+nm+nm+nwithm,nZcangenerallybegivenavalue.WecanalwayssolveforxC:x=m+nxx=m±m2+4n2Buthowtoprovethevalueofthisexample?x=333333=???32±32iYoutellmeadding,substracting,dividingbyrealnumbersgivescomplexnumbers?
Commented by mahdipoor last updated on 26/Dec/22
no , i is not (√(−1))   , i is real nomber and   not importand how many of i ,  we know n→∞ , lim A_n =2(((i−1)/(i−1)))=c   if i≠1 ⇒ c=2  if i=1 for n=∞ ⇒ hop ⇒ (2/1)=2=c
no,iisnot1,iisrealnomberandnotimportandhowmanyofi,weknown,limAn=2(i1i1)=cifi1c=2ifi=1forn=hop21=2=c

Leave a Reply

Your email address will not be published. Required fields are marked *