Menu Close

find-3x-4-mod-5-




Question Number 146408 by tabata last updated on 13/Jul/21
find 3x≊4( mod 5)
find3x4(mod5)
Commented by tabata last updated on 13/Jul/21
help me sir
helpmesir
Commented by tabata last updated on 13/Jul/21
?????????
?????????
Commented by otchereabdullai@gmail.com last updated on 16/Jul/21
nice question
nicequestion
Answered by gsk2684 last updated on 13/Jul/21
to find x such that 5 divides 3x−4  3x−4=5n  x=((5n+4)/3) ,n∈Z  x∈{...,(4/3),(9/3),((14)/3),...}
tofindxsuchthat5divides3x43x4=5nx=5n+43,nZx{,43,93,143,}
Commented by tabata last updated on 13/Jul/21
sir can you give me steb by steb please    how x ∈{.....,(4/3),(9/3),((14)/3),....}
sircanyougivemestebbystebpleasehowx{..,43,93,143,.}
Commented by gsk2684 last updated on 13/Jul/21
just by substiting the value of n   if n=o then x=((5(0)+4)/3)=(4/3)  if n=1 then x=((5(1)+4)/3)=(9/3)  if n=2 then x=((5(2)+4)/3)=((14)/3)  and so on.
justbysubstitingthevalueofnifn=othenx=5(0)+43=43ifn=1thenx=5(1)+43=93ifn=2thenx=5(2)+43=143andsoon.
Answered by Rasheed.Sindhi last updated on 13/Jul/21
           3x≡4(mod 5)             3x≡4+5(mod 5)             3x≡9(mod 5)               x≡3(mod 5)  x=3+5k; ∀k∈Z
3x4(mod5)3x4+5(mod5)3x9(mod5)x3(mod5)x=3+5k;kZ
Answered by physicstutes last updated on 13/Jul/21
3x ≡ 4 (mod 5) ⇒ 3x = 5y + 4 where y ∈Z  so we solve the linear diophantine equation   3x−5y = 4  5 = 1(3) + 2   3 = 1(2) + 1  2 = 2(1)+0  Reversing the steps in euclids algorithm just done above,   1 = 3−1(2)      = 3−1[5−1(3)]      = 3−1(5)+1(3)      = 2(3)−1(5)      = 3[5−1(3)]−1(5)       = −3(3)−2(5)  ∵ x = 3 is a good solution other solutions are such that   x ≡ 3 (mod 5)
3x4(mod5)3x=5y+4whereyZsowesolvethelineardiophantineequation3x5y=45=1(3)+23=1(2)+12=2(1)+0Reversingthestepsineuclidsalgorithmjustdoneabove,1=31(2)=31[51(3)]=31(5)+1(3)=2(3)1(5)=3[51(3)]1(5)=3(3)2(5)x=3isagoodsolutionothersolutionsaresuchthatx3(mod5)

Leave a Reply

Your email address will not be published. Required fields are marked *