Menu Close

find-4-x-2-y-2-dxdy-with-x-y-R-2-x-2-y-2-2x-




Question Number 27500 by abdo imad last updated on 07/Jan/18
find ∫∫_Δ (√(4 −x^2 −y^2  ))  dxdy with  Δ={(x,y) ∈R^2 / x^2  +y^2  ≤2x}
findΔ4x2y2dxdywithΔ={(x,y)R2/x2+y22x}
Commented by abdo imad last updated on 10/Jan/18
let use the changement x=rcosθ and y=rsinθ  x^2  +y^2 ≤2x ⇔ r^2 ≤ 2r cosθ  ⇔  0<r≤ 2cosθ  I= ∫∫_(−_ (π/2)<θ<(π/2) and 0<r≤2cosθ)   (√( 4−r^2 )) rdrdθ  I =∫_(−(π/2)) ^(π/2) (  ∫_0 ^(2cosθ) r(√( 4−r^2 )) dr)dθ  but    ∫_0 ^(2cosθ) r(√(4−r^2 )) dr  = [−(1/3)(4−r^2 )^(3/2)   ]_0 ^(2cosθ)   = −(1/3)((4−4cos^2 θ)^(3/2) −4^(3/2)   =−(1/3)(4^(3/2) (sin^2 )^(3/2) −8)= −(1/3)(8 sin^3 θ −8 )  I= −(8/3) ∫_(−(π/2)) ^(π/2)  (sin^3 θ −1)dθ   = ((8π)/3) −(8/3) ∫_(−(π/2)) ^(π/2)   sin^3 θdθ     we find the value of I by linearisation of sin^3 θ....
letusethechangementx=rcosθandy=rsinθx2+y22xr22rcosθ0<r2cosθI=π2<θ<π2and0<r2cosθ4r2rdrdθI=π2π2(02cosθr4r2dr)dθbut02cosθr4r2dr=[13(4r2)32]02cosθ=13((44cos2θ)32432=13(432(sin2)328)=13(8sin3θ8)I=83π2π2(sin3θ1)dθ=8π383π2π2sin3θdθwefindthevalueofIbylinearisationofsin3θ.
Commented by abdo imad last updated on 10/Jan/18
the  fonction is impar so  ∫_(−(π/2)) ^(π/2)  sin^3 dx=0  and I= ((8π)/3) .
thefonctionisimparsoπ2π2sin3dx=0andI=8π3.

Leave a Reply

Your email address will not be published. Required fields are marked *