Menu Close

find-4-x-2-y-2-dxdy-with-x-y-R-2-x-2-y-2-2x-




Question Number 27500 by abdo imad last updated on 07/Jan/18
find ∫∫_Δ (√(4 −x^2 −y^2  ))  dxdy with  Δ={(x,y) ∈R^2 / x^2  +y^2  ≤2x}
$${find}\:\int\int_{\Delta} \sqrt{\mathrm{4}\:−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:}\:\:{dxdy}\:{with} \\ $$$$\Delta=\left\{\left({x},{y}\right)\:\in\mathbb{R}^{\mathrm{2}} /\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{2}{x}\right\} \\ $$
Commented by abdo imad last updated on 10/Jan/18
let use the changement x=rcosθ and y=rsinθ  x^2  +y^2 ≤2x ⇔ r^2 ≤ 2r cosθ  ⇔  0<r≤ 2cosθ  I= ∫∫_(−_ (π/2)<θ<(π/2) and 0<r≤2cosθ)   (√( 4−r^2 )) rdrdθ  I =∫_(−(π/2)) ^(π/2) (  ∫_0 ^(2cosθ) r(√( 4−r^2 )) dr)dθ  but    ∫_0 ^(2cosθ) r(√(4−r^2 )) dr  = [−(1/3)(4−r^2 )^(3/2)   ]_0 ^(2cosθ)   = −(1/3)((4−4cos^2 θ)^(3/2) −4^(3/2)   =−(1/3)(4^(3/2) (sin^2 )^(3/2) −8)= −(1/3)(8 sin^3 θ −8 )  I= −(8/3) ∫_(−(π/2)) ^(π/2)  (sin^3 θ −1)dθ   = ((8π)/3) −(8/3) ∫_(−(π/2)) ^(π/2)   sin^3 θdθ     we find the value of I by linearisation of sin^3 θ....
$${let}\:{use}\:{the}\:{changement}\:{x}={rcos}\theta\:{and}\:{y}={rsin}\theta \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{2}{x}\:\Leftrightarrow\:{r}^{\mathrm{2}} \leqslant\:\mathrm{2}{r}\:{cos}\theta\:\:\Leftrightarrow\:\:\mathrm{0}<{r}\leqslant\:\mathrm{2}{cos}\theta \\ $$$${I}=\:\int\int_{−_{} \frac{\pi}{\mathrm{2}}<\theta<\frac{\pi}{\mathrm{2}}\:{and}\:\mathrm{0}<{r}\leqslant\mathrm{2}{cos}\theta} \:\:\sqrt{\:\mathrm{4}−{r}^{\mathrm{2}} }\:{rdrd}\theta \\ $$$${I}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\:\int_{\mathrm{0}} ^{\mathrm{2}{cos}\theta} {r}\sqrt{\:\mathrm{4}−{r}^{\mathrm{2}} }\:{dr}\right){d}\theta\:\:{but}\:\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}{cos}\theta} {r}\sqrt{\mathrm{4}−{r}^{\mathrm{2}} }\:{dr}\:\:=\:\left[−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{4}−{r}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:\:\right]_{\mathrm{0}} ^{\mathrm{2}{cos}\theta} \\ $$$$=\:−\frac{\mathrm{1}}{\mathrm{3}}\left(\left(\mathrm{4}−\mathrm{4}{cos}^{\mathrm{2}} \theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{4}^{\frac{\mathrm{3}}{\mathrm{2}}} \right. \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{4}^{\frac{\mathrm{3}}{\mathrm{2}}} \left({sin}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{8}\right)=\:−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{8}\:{sin}^{\mathrm{3}} \theta\:−\mathrm{8}\:\right) \\ $$$${I}=\:−\frac{\mathrm{8}}{\mathrm{3}}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sin}^{\mathrm{3}} \theta\:−\mathrm{1}\right){d}\theta\:\:\:=\:\frac{\mathrm{8}\pi}{\mathrm{3}}\:−\frac{\mathrm{8}}{\mathrm{3}}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:{sin}^{\mathrm{3}} \theta{d}\theta\:\:\: \\ $$$${we}\:{find}\:{the}\:{value}\:{of}\:{I}\:{by}\:{linearisation}\:{of}\:{sin}^{\mathrm{3}} \theta…. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by abdo imad last updated on 10/Jan/18
the  fonction is impar so  ∫_(−(π/2)) ^(π/2)  sin^3 dx=0  and I= ((8π)/3) .
$${the}\:\:{fonction}\:{is}\:{impar}\:{so}\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{3}} {dx}=\mathrm{0}\:\:{and}\:{I}=\:\frac{\mathrm{8}\pi}{\mathrm{3}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *