find-4-x-2-y-2-dxdy-with-x-y-R-2-x-2-y-2-2x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27500 by abdo imad last updated on 07/Jan/18 find∫∫Δ4−x2−y2dxdywithΔ={(x,y)∈R2/x2+y2⩽2x} Commented by abdo imad last updated on 10/Jan/18 letusethechangementx=rcosθandy=rsinθx2+y2⩽2x⇔r2⩽2rcosθ⇔0<r⩽2cosθI=∫∫−π2<θ<π2and0<r⩽2cosθ4−r2rdrdθI=∫−π2π2(∫02cosθr4−r2dr)dθbut∫02cosθr4−r2dr=[−13(4−r2)32]02cosθ=−13((4−4cos2θ)32−432=−13(432(sin2)32−8)=−13(8sin3θ−8)I=−83∫−π2π2(sin3θ−1)dθ=8π3−83∫−π2π2sin3θdθwefindthevalueofIbylinearisationofsin3θ…. Commented by abdo imad last updated on 10/Jan/18 thefonctionisimparso∫−π2π2sin3dx=0andI=8π3. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-pi-6-tan-3x-2-tan-3x-Next Next post: find-0-pi-2-ln-1-xsin-2-t-sin-2-t-dt-with-1-lt-x-lt-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.