Menu Close

Find-a-2-tan-2-x-dx-with-a-gt-0-related-to-Q45187-




Question Number 45213 by MrW3 last updated on 10/Oct/18
Find ∫(√(a^2 −tan^2  x)) dx (with a>0)  (related to Q45187)
Finda2tan2xdx(witha>0)(relatedtoQ45187)
Answered by MrW3 last updated on 10/Oct/18
I=∫(√(a^2 −tan^2  x)) dx  let u=tan x  du=(dx/(cos^2  x))=(1+tan^2  x)dx=(1+u^2 )dx  I=∫((√(a^2 −u^2 ))/(1+u^2 ))du  let u=a sin θ ⇒θ=sin^(−1) (u/a)  du=a cos θ dθ  I=a^2 ∫((cos^2  θ)/(1+a^2  sin^2  θ))dθ  let v=tan θ  dv=(dθ/(cos^2  θ))=(1+tan^2  θ)dθ=(v^2 +1)dθ  I=a^2 ∫(dv/({(a^2 +1)v^2 +1}(v^2 +1)))  (1/({(a^2 +1)v^2 +1}(v^2 +1)))=(A/((a^2 +1)v^2 +1))+(B/(v^2 +1))  A(v^2 +1)+B(a^2 +1)v^2 +B=1  {A+B(a^2 +1)}v^2 +(A+B)=1  ⇒A+B=1  ⇒A+B(a^2 +1)=0  ⇒B=−(1/a^2 )  ⇒A=((a^2 +1)/a^2 )  I=a^2 ∫[((a^2 +1)/(a^2 {(a^2 +1)v^2 +1}))−(1/(a^2 (v^2 +1)))]dv  I=∫[((a^2 +1)/((a^2 +1)v^2 +1))−(1/(v^2 +1))]dv  I=(a^2 +1)∫(1/((a^2 +1)v^2 +1))dv−∫(1/(v^2 +1))dv  I=(a^2 +1)I_1 −I_2   I_1 =∫(1/((a^2 +1)v^2 +1))dv  let p=(√(a^2 +1))v  dp=(√(a^2 +1)) dv  I_1 =(1/( (√(a^2 +1))))∫(dp/(p^2 +1))=(1/( (√(a^2 +1))))tan^(−1) p  I_1 =(1/( (√(a^2 +1)))) tan^(−1) ((√(a^2 +1))v)  I_1 =(1/( (√(a^2 +1)))) tan^(−1) ((√(a^2 +1)) tan θ)  I_1 =(1/( (√(a^2 +1)))) tan^(−1) ((√(a^2 +1)) ((sin θ)/( (√(1−sin^2  θ)))))  I_1 =(1/( (√(a^2 +1)))) tan^(−1) ((√(a^2 +1)) ((u/a)/( (√(1−(u^2 /a^2 ))))))  I_1 =(1/( (√(a^2 +1)))) tan^(−1) ((√(a^2 +1)) (u/( (√(a^2 −u^2 )))))  ⇒I_1 =(1/( (√(a^2 +1)))) tan^(−1) ((((√(a^2 +1)) tan x)/( (√(a^2 −tan^2  x)))))  I_2 =∫(1/(v^2 +1))dv=tan^(−1) v=θ=sin^(−1) (u/a)  ⇒I_2 =sin^(−1) (u/a)=sin^(−1) (((tan x)/a))  I=(a^2 +1)I_1 −I_2   ⇒I=((√(a^2 +1))) tan^(−1) ((((√(a^2 +1)) tan x)/( (√(a^2 −tan^2  x)))))−sin^(−1) (((tan x)/a))+C
I=a2tan2xdxletu=tanxdu=dxcos2x=(1+tan2x)dx=(1+u2)dxI=a2u21+u2duletu=asinθθ=sin1uadu=acosθdθI=a2cos2θ1+a2sin2θdθletv=tanθdv=dθcos2θ=(1+tan2θ)dθ=(v2+1)dθI=a2dv{(a2+1)v2+1}(v2+1)1{(a2+1)v2+1}(v2+1)=A(a2+1)v2+1+Bv2+1A(v2+1)+B(a2+1)v2+B=1{A+B(a2+1)}v2+(A+B)=1A+B=1A+B(a2+1)=0B=1a2A=a2+1a2I=a2[a2+1a2{(a2+1)v2+1}1a2(v2+1)]dvI=[a2+1(a2+1)v2+11v2+1]dvI=(a2+1)1(a2+1)v2+1dv1v2+1dvI=(a2+1)I1I2I1=1(a2+1)v2+1dvletp=a2+1vdp=a2+1dvI1=1a2+1dpp2+1=1a2+1tan1pI1=1a2+1tan1(a2+1v)I1=1a2+1tan1(a2+1tanθ)I1=1a2+1tan1(a2+1sinθ1sin2θ)I1=1a2+1tan1(a2+1ua1u2a2)I1=1a2+1tan1(a2+1ua2u2)I1=1a2+1tan1(a2+1tanxa2tan2x)I2=1v2+1dv=tan1v=θ=sin1uaI2=sin1ua=sin1(tanxa)I=(a2+1)I1I2I=(a2+1)tan1(a2+1tanxa2tan2x)sin1(tanxa)+C
Commented by malwaan last updated on 10/Oct/18
thank you
thankyou
Commented by ajfour last updated on 10/Oct/18
Thanks a lot Sir!
ThanksalotSir!
Answered by ajfour last updated on 10/Oct/18
let  tan x = asin ψ  ⇒  dx= ((acos ψdψ)/(1+a^2 sin^2 ψ))  I=∫((a^2 cos^2 ψ)/(1+a^2 sin^2 ψ))dψ  let  tan ψ = t  ⇒ dψ=(dt/(1+t^2 ))  I=∫((a^2 ((1/(1+t^2 )))(dt/((1+t^2 ))))/(1+(a^2 /((1+(1/t^2 ))))))    = ∫((a^2 dt)/((1+t^2 )^2 +a^2 t^2 (1+t^2 )))  ...............................................    = ∫((a^2 dt)/((a^2 +1)t^4 +(a^2 +2)t^2 +1))    = (a^2 /( (√(a^2 +1))))∫(((1/t^2 ))/( (√(a^2 +1))t^2 +(1/( (√(a^2 +1))t^2 ))+((a^2 +2)/( (√(a^2 +1))))))dt    let  t(a^2 +1)^(1/4) =bt=z  ⇒    bdt = dz  ⇒ I = ((b^4 −1)/b^2 )∫(((b^2 /z^2 )((dz/b)))/((z+(1/z))^2 +((b^4 +1)/b^2 )−2))     = ((b^4 −1)/(2b))∫(((1+(1/z^2 ))−(1−(1/z^2 )))/((z+(1/z))^2 +(((b^2 −1)/b))^2 )) dz    = ((b^4 −1)/(2b))∫(((1+(1/z^2 ))dz)/((z−(1/z))^2 +(((b^2 +1)/b))^2 ))            −((b^4 −1)/(2b))∫(((1−(1/z^2 ))dz)/((z+(1/z))^2 +(((b^2 −1)/b))^2 ))   I = ((b^4 −1)/(2b))[(b/(b^2 +1))tan^(−1) (((z−(1/z))/((b^2 +1)/b)))−(b/(b^2 −1))tan^(−1) (((z+(1/z))/((b^2 −1)/b)))]+c  And since  bt=z , t=tan 𝛙       asin 𝛙 = tan x  ⇒  tan 𝛙 = z/b        ((az)/( (√(z^2 +b^2 )))) = tan x  ∴   z^2  = ((b^2 tan^2 x)/(a^2 −tan^2 x))  ⇒  z = (((a^2 +1)^(1/4) tan x)/( (√(a^2 −tan^2 x))))   ; b=(a^2 +1)^(1/4)    I = ((b^4 −1)/(2b))[(b/(b^2 +1))tan^(−1) (((z−(1/z))/((b^2 +1)/b)))−(b/(b^2 −1))tan^(−1) (((z+(1/z))/((b^2 −1)/b)))]+c  .   I= ((b^2 −1)/2)tan^(−1) ((b(z^2 −1))/(z(b^2 +1)))              −((b^2 +1)/2)tan^(−1) ((b(z^2 +1))/(z(b^2 −1)))    .
lettanx=asinψdx=acosψdψ1+a2sin2ψI=a2cos2ψ1+a2sin2ψdψlettanψ=tdψ=dt1+t2I=a2(11+t2)dt(1+t2)1+a2(1+1t2)=a2dt(1+t2)2+a2t2(1+t2)..=a2dt(a2+1)t4+(a2+2)t2+1=a2a2+1(1/t2)a2+1t2+1a2+1t2+a2+2a2+1dtlett(a2+1)1/4=bt=zbdt=dzI=b41b2b2z2(dzb)(z+1z)2+b4+1b22=b412b(1+1z2)(11z2)(z+1z)2+(b21b)2dz=b412b(1+1z2)dz(z1z)2+(b2+1b)2b412b(11z2)dz(z+1z)2+(b21b)2I=b412b[bb2+1tan1(z1zb2+1b)bb21tan1(z+1zb21b)]+cAndsincebt=z,t=tanψasinψ=tanxtanψ=z/bazz2+b2=tanxz2=b2tan2xa2tan2xz=(a2+1)1/4tanxa2tan2x;b=(a2+1)1/4I=b412b[bb2+1tan1(z1zb2+1b)bb21tan1(z+1zb21b)]+c.I=b212tan1b(z21)z(b2+1)b2+12tan1b(z2+1)z(b21).
Commented by MrW3 last updated on 10/Oct/18
thanks sir!
thankssir!
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
∫((a^2 −tan^2 x)/( (√(a^2 −tan^2 x))))dx  a^2 ∫(dx/( (√(a^2 −tan^2 x))))−∫((sec^2 x−1)/( (√(a^2 −tan^2 x))))dx  (a^2 +1)∫(dx/( (√(a^2 −tan^2 x))))−∫((sec^2 x dx)/( (√(a^2 −tan^2 x))))  I_1 −I_2   I_1 =(a^2 +1)∫((cosxdx)/( (√(a^2 cos^2 x−sin^2 x))))  t=sinx   dt=cosx dx  (a^2 +1)∫(dt/( (√(a^2 (1−t^2 )−t^2 ))))  (a^2 +1)∫(dt/( (√(a^2 −t^2 (a^2 +1)))))  (a^2 +1)∫(dt/( (√((a^2 +1)((a^2 /(a^2 +1)))−t^2 ))))  (√(a^2 +1)) ∫(dt/( (√(((a^2 /(a^2 +1)))^ −t^2 ))))  (√(a^2 +1)) ×sin^(−1) ((t/( (√(a^2 /(a^2 +1))) )))  (√(a^2 +1)) ×sin^(−1) (((sinx)/( (√(a^2 /(a^2 +1))) )))+c_1   I_2 =∫((sec^2 xdx)/( (√(a^2 −tan^2 x))))dx  k=tanx   dk=sec^2 xdx  ∫(dk/( (√(a^2 −k^2 )) ))  sin^(−1) ((k/a))+c_2   sin^(−1) (((tanx)/a))+c_2   (√(a^2 +1)) ×sin^(−1) (((sinx)/( (√(a^2 /(a^2 +1))))))−sin^(−1) (((tanx)/a))+c
a2tan2xa2tan2xdxa2dxa2tan2xsec2x1a2tan2xdx(a2+1)dxa2tan2xsec2xdxa2tan2xI1I2I1=(a2+1)cosxdxa2cos2xsin2xt=sinxdt=cosxdx(a2+1)dta2(1t2)t2(a2+1)dta2t2(a2+1)(a2+1)dt(a2+1)(a2a2+1)t2a2+1dt(a2a2+1)t2a2+1×sin1(ta2a2+1)a2+1×sin1(sinxa2a2+1)+c1I2=sec2xdxa2tan2xdxk=tanxdk=sec2xdxdka2k2sin1(ka)+c2sin1(tanxa)+c2a2+1×sin1(sinxa2a2+1)sin1(tanxa)+c
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
pls check
plscheck
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
most welcome sir...
mostwelcomesir
Commented by MrW3 last updated on 11/Oct/18
sir, your answer is correct, it can be  transformed to the same form as mine.  there is one strange thing:  both in the result from me and from  ajfour sir we have a limitation that  is tan x≠a, but in your result there  is no limitation. but from the point of view  of physic there should be this limitation.  can you explain it?
sir,youransweriscorrect,itcanbetransformedtothesameformasmine.thereisonestrangething:bothintheresultfrommeandfromajfoursirwehavealimitationthatistanxa,butinyourresultthereisnolimitation.butfromthepointofviewofphysicthereshouldbethislimitation.canyouexplainit?
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
sir give me time to go through the problem of   physics both of you sir solved...
sirgivemetimetogothroughtheproblemofphysicsbothofyousirsolved
Commented by MrW3 last updated on 11/Oct/18
thank you sir.  it′s about the question if x can be all  values from 0 to (π/2).
thankyousir.itsaboutthequestionifxcanbeallvaluesfrom0toπ2.
Commented by MrW3 last updated on 11/Oct/18
thank you sir!
thankyousir!

Leave a Reply

Your email address will not be published. Required fields are marked *