find-a-a-dx-1-x-2-x-2-a-2-with-a-gt-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36944 by maxmathsup by imad last updated on 07/Jun/18 findφ(a)=∫a+∞dx(1+x2)x2−a2witha>0 Commented by abdo.msup.com last updated on 07/Jun/18 changementx=ach(t)giveφ(a)=∫0+∞ash(t)dt(1+a2ch2t)ash(t)=∫0∞dt1+a21+ch(2t)2=∫0∞2dt2+a2+a2ch(2t)=∫0∞2dt2+a2+a2e2t+e−2t2=∫0∞2dt4+2a2+a2e2t+a2e−2t=e2t=x∫1+∞24+2a2+a2x+a2xdx2x=∫1+∞dx(4+2a2)x+a2x2+a2=∫1+∞dxa2x2+2(2+a2)x+a2letF(x)=1a2x2+2(2+a2)x+a2Δ′=(2+a2)2−a4=4+4a2+a4−a4=4a2+4x1=−(2+a2)+21+a2a2x2=−(2+a2)−21+a2a2F(x)=1x1−x2{1x−x1−1x−x2}⇒∫1+∞F(x)dx=a241+a2∫1+∞(1x−x1−1x−x2)dx=a241+a2[ln∣x−x1x−x2∣]1+∞=a241+a2ln∣1−x21−x1∣=φ(a). Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jun/18 t=1xdt=−1x2dxdt=−t2dxdt−t2=dx∫1a0−dtt2×11+1t2×11t2−a2∫1a0−dtt2×t21+t2×t1−a2t2∫01atdt(1+t2)×a1a2−t2=1a∫01atdt(1+t2)1a2−t2k2=1a2−t22kdk=−2tdt=1a∫1a0−kdk(1+1a2−k2)k=1a∫01adk(1+1a2)2−k2nowuseformula..∫dxa2−x2=12aln∣a+xa−x∣=1a×12×1+1a2{ln∣1+1a2+k1+1a2−k∣}01a=1a×a21+a2{ln∣1+1a2+1a1+1a2−1a∣−ln∣1∣}=121+a2×{ln∣1+a2+11+a2−1∣} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-I-0-pi-2-cosx-1-cosx-sinx-dx-and-J-0-pi-2-sinx-1-cosx-sinx-dx-prove-that-I-J-then-calculate-I-and-J-Next Next post: calulate-0-pi-4-dx-tan-x-1-tanx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.