Menu Close

find-a-a-dx-1-x-2-x-2-a-2-with-a-gt-0-




Question Number 36944 by maxmathsup by imad last updated on 07/Jun/18
find ϕ(a) = ∫_a ^(+∞)     (dx/((1+x^2 )(√(x^2  −a^2 ))))   with a>0
findφ(a)=a+dx(1+x2)x2a2witha>0
Commented by abdo.msup.com last updated on 07/Jun/18
changement x=ach(t) give  ϕ(a) = ∫_0 ^(+∞)     ((ash(t)dt)/((1+a^2 ch^2 t)ash(t)))  = ∫_0 ^∞        (dt/(1+a^2  ((1+ch(2t))/2)))  =∫_0 ^∞        ((2dt)/(2+a^2  +a^2 ch(2t)))  =∫_0 ^∞     ((2dt)/(2+a^2  +a^2    ((e^(2t)  +e^(−2t) )/2)))  =∫_0 ^∞      ((2dt)/(4+2a^(2 )  +a^2  e^(2t)  +a^2  e^(−2t) ))  =_(e^(2t) =x)     ∫_1 ^(+∞)       (2/(4 +2a^2  +a^2 x +(a^2 /x))) (dx/(2x))  =∫_1 ^(+∞)        (dx/((4+2a^2 )x +a^2  x^2  +a^2 ))  =∫_1 ^(+∞)     (dx/(a^2  x^2  +2(2+a^2 )x +a^2 ))  let F(x)= (1/(a^2 x^2  +2(2+a^2 )x +a^2 ))  Δ^′  =(2+a^2 )^2  −a^4 =4 +4a^2  +a^4  −a^4   =4a^2  +4  x_1 =((−(2+a^2 ) +2(√(1+a^2 )))/a^2 )  x_2 =((−(2+a^2 ) −2(√(1+a^2 )))/a^2 )  F(x)= (1/(x_1 −x_2 )){  (1/(x−x_1 )) −(1/(x−x_2 ))} ⇒  ∫_1 ^(+∞)  F(x)dx=(a^2 /(4(√(1+a^2 )))) ∫_1 ^(+∞) (  (1/(x−x_1 )) −(1/(x−x_2 )))dx  =(a^2 /(4(√(1+a^2 ))))[ln∣ ((x−x_1 )/(x−x_2 ))∣]_1 ^(+∞)   =(a^2 /(4(√(1+a^2 ))))ln∣ ((1−x_2 )/(1−x_1 ))∣  =ϕ(a) .
changementx=ach(t)giveφ(a)=0+ash(t)dt(1+a2ch2t)ash(t)=0dt1+a21+ch(2t)2=02dt2+a2+a2ch(2t)=02dt2+a2+a2e2t+e2t2=02dt4+2a2+a2e2t+a2e2t=e2t=x1+24+2a2+a2x+a2xdx2x=1+dx(4+2a2)x+a2x2+a2=1+dxa2x2+2(2+a2)x+a2letF(x)=1a2x2+2(2+a2)x+a2Δ=(2+a2)2a4=4+4a2+a4a4=4a2+4x1=(2+a2)+21+a2a2x2=(2+a2)21+a2a2F(x)=1x1x2{1xx11xx2}1+F(x)dx=a241+a21+(1xx11xx2)dx=a241+a2[lnxx1xx2]1+=a241+a2ln1x21x1=φ(a).
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jun/18
t=(1/x)  dt=((−1)/x^2 )dx  dt=−t^2 dx  (dt/(−t^2 ))=dx  ∫_(1/a) ^0  ((−dt)/t^2 )×(1/(1+(1/t^2 )))×(1/( (√((1/t^2 )−a^2 ))))  ∫_(1/a) ^0  ((−dt)/t^2 )×(t^2 /(1+t^2 ))×(t/( (√(1−a^2 t^2 ))))  ∫_0 ^(1/a) ((tdt)/((1+t^2 )×a(√((1/a^2 )−t^2  ))))  =(1/a)∫_0 ^(1/a) ((tdt)/((1+t^2 )(√((1/a^2 )−t^2 ))))  k^2 =(1/a^2 )−t^2   2kdk=−2tdt  =(1/a)∫_(1/a) ^0 ((−kdk)/((1+(1/a^2 )−k^2 )k))  =(1/a)∫_0 ^(1/a) (dk/(((√(1+(1/a^2 ))) )^2 −k^2 ))  now use formula..  ∫(dx/(a^2 −x^2 ))=(1/(2a))ln∣((a+x)/(a−x))∣  =(1/a)×(1/(2×(√(1+(1/a^2 ))))){ln∣(((√(1+(1/a^2 ))) +k)/( (√(1+(1/a^2 ))) −k))∣}_0 ^(1/a)   =(1/a)×(a/(2(√(1+a^2 )))){ln∣(((√(1+(1/a^2 )  )) +(1/a))/( (√(1+(1/(a^2  )))) −(1/a)))∣−ln∣1∣}  =(1/(2(√(1+a^2 ))))×{ln∣(((√(1+a^2  )) +1)/( (√(1+a^2 )) −1))∣}
t=1xdt=1x2dxdt=t2dxdtt2=dx1a0dtt2×11+1t2×11t2a21a0dtt2×t21+t2×t1a2t201atdt(1+t2)×a1a2t2=1a01atdt(1+t2)1a2t2k2=1a2t22kdk=2tdt=1a1a0kdk(1+1a2k2)k=1a01adk(1+1a2)2k2nowuseformula..dxa2x2=12alna+xax=1a×12×1+1a2{ln1+1a2+k1+1a2k}01a=1a×a21+a2{ln1+1a2+1a1+1a21aln1}=121+a2×{ln1+a2+11+a21}

Leave a Reply

Your email address will not be published. Required fields are marked *