Menu Close

find-a-b-b-x-x-a-dx-with-a-lt-b-then-find-1-2-2-x-x-1-dx-




Question Number 31074 by abdo imad last updated on 02/Mar/18
find  ∫_a ^b  (√((b−x)(x−a))) dx with a<b .then find    ∫_1 ^(√2) (√(((√2) −x)(x−1))) dx.
findab(bx)(xa)dxwitha<b.thenfind12(2x)(x1)dx.
Commented by abdo imad last updated on 09/Mar/18
let put I= ∫_a ^b (√((b−x)(x−a))) dx  the ch.x=((a−b)/2)t + ((a+b)/2)  b−x=b−((a+b)/2) −((a−b)/2)t=((b−a)/2) −((a−b)/2)t=((b−a)/2)(1+t)  x−a=((a−b)/2)t +((a+b)/2) −a= ((a−b)/2)t +((b−a)/2)=((b−a)/2)(1−t) and  we have ((a−b)/2)t=x−((a+b)/2) ⇒t=((2(x−((a+b)/2)))/(a−b))=((2x −a−b)/(a−b))  x=a ⇒t=1 and x=b ⇒t=−1 ⇒  I = −∫_(−1) ^(1 ) (√(((b−a)/2)(1+t)((b−a)/2)(1−t))) ((a−b)/2)dt  I=(((b−a)^2 )/4) ∫_(−1) ^1  (√(1−t^2  )) dt= (((b−a)^2 )/2) ∫_0 ^1  (√(1−t^2 )) dt ch.t=sinθ  give ∫_0 ^1  (√(1−t^2  )) dt=∫_0 ^(π/2)  cosθ cosθdθ=∫_0 ^(π/2)  cos^2 θ dθ  =(1/2) ∫_0 ^(π/2)  (1+cos(2θ)dθ = (π/4) ⇒ I= (((b−a)^2 )/8) .then let take  a=1 and b=(√2) we get  ∫_1 ^(√2) (√(((√2) −x)(x−1))) dx=((((√2) −1)^2 )/8)=((3−2(√2))/8) .
letputI=ab(bx)(xa)dxthech.x=ab2t+a+b2bx=ba+b2ab2t=ba2ab2t=ba2(1+t)xa=ab2t+a+b2a=ab2t+ba2=ba2(1t)andwehaveab2t=xa+b2t=2(xa+b2)ab=2xababx=at=1andx=bt=1I=11ba2(1+t)ba2(1t)ab2dtI=(ba)24111t2dt=(ba)22011t2dtch.t=sinθgive011t2dt=0π2cosθcosθdθ=0π2cos2θdθ=120π2(1+cos(2θ)dθ=π4I=(ba)28.thenlettakea=1andb=2weget12(2x)(x1)dx=(21)28=3228.

Leave a Reply

Your email address will not be published. Required fields are marked *