Menu Close

find-a-b-c-in-R-cos-a-cos-b-cos-c-0-sin-a-sin-b-sin-c-0-




Question Number 59997 by aliesam last updated on 16/May/19
find (a,b,c) in R   cos(a)+cos(b)+cos(c)=0  sin(a)+sin(b)+sin(c)=0
find(a,b,c)inRcos(a)+cos(b)+cos(c)=0sin(a)+sin(b)+sin(c)=0
Answered by MJS last updated on 17/May/19
we have only 2 equations in 3 variables ⇒  we are free to choose one  let a=0  1+cos b +cos c =0  sin b +sin c =0  let cos b =x∧cos c =y ⇒ sin b =±(√(1−x^2 ))∧sin c =±(√(1−y^2 ))  1+x+y=0 ⇒ y=−x−1  (√(1−x^2 ))−(√(1−y^2 ))=0 ⇒ 1−x^2 =1−y^2   1−x^2 =1−(−x−1)^2   1−x^2 =−2x−x^2   x=−(1/2) ⇒ y=−(1/2) ⇒  ⇒ cos b =cos c =−(1/2) ⇒  ⇒ b=c=±((2π)/3)+2πz∧z∈Z but sin b =−sin c ⇒  a=α∈R  b=α±((2π)/3)+2πz_1 ∧c=α∓((2π)/3)+2πz_2 ∧z_1 , z_2 ∈Z
wehaveonly2equationsin3variableswearefreetochooseoneleta=01+cosb+cosc=0sinb+sinc=0letcosb=xcosc=ysinb=±1x2sinc=±1y21+x+y=0y=x11x21y2=01x2=1y21x2=1(x1)21x2=2xx2x=12y=12cosb=cosc=12b=c=±2π3+2πzzZbutsinb=sinca=αRb=α±2π3+2πz1c=α2π3+2πz2z1,z2Z

Leave a Reply

Your email address will not be published. Required fields are marked *