Question Number 59997 by aliesam last updated on 16/May/19
$${find}\:\left({a},{b},{c}\right)\:{in}\:{R}\: \\ $$$${cos}\left({a}\right)+{cos}\left({b}\right)+{cos}\left({c}\right)=\mathrm{0} \\ $$$${sin}\left({a}\right)+{sin}\left({b}\right)+{sin}\left({c}\right)=\mathrm{0} \\ $$
Answered by MJS last updated on 17/May/19
$$\mathrm{we}\:\mathrm{have}\:\mathrm{only}\:\mathrm{2}\:\mathrm{equations}\:\mathrm{in}\:\mathrm{3}\:\mathrm{variables}\:\Rightarrow \\ $$$$\mathrm{we}\:\mathrm{are}\:\mathrm{free}\:\mathrm{to}\:\mathrm{choose}\:\mathrm{one} \\ $$$$\mathrm{let}\:{a}=\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{cos}\:{b}\:+\mathrm{cos}\:{c}\:=\mathrm{0} \\ $$$$\mathrm{sin}\:{b}\:+\mathrm{sin}\:{c}\:=\mathrm{0} \\ $$$$\mathrm{let}\:\mathrm{cos}\:{b}\:={x}\wedge\mathrm{cos}\:{c}\:={y}\:\Rightarrow\:\mathrm{sin}\:{b}\:=\pm\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\wedge\mathrm{sin}\:{c}\:=\pm\sqrt{\mathrm{1}−{y}^{\mathrm{2}} } \\ $$$$\mathrm{1}+{x}+{y}=\mathrm{0}\:\Rightarrow\:{y}=−{x}−\mathrm{1} \\ $$$$\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }=\mathrm{0}\:\Rightarrow\:\mathrm{1}−{x}^{\mathrm{2}} =\mathrm{1}−{y}^{\mathrm{2}} \\ $$$$\mathrm{1}−{x}^{\mathrm{2}} =\mathrm{1}−\left(−{x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}−{x}^{\mathrm{2}} =−\mathrm{2}{x}−{x}^{\mathrm{2}} \\ $$$${x}=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{y}=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{cos}\:{b}\:=\mathrm{cos}\:{c}\:=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\Rightarrow\:{b}={c}=\pm\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi{z}\wedge{z}\in\mathbb{Z}\:\mathrm{but}\:\mathrm{sin}\:{b}\:=−\mathrm{sin}\:{c}\:\Rightarrow \\ $$$${a}=\alpha\in\mathbb{R} \\ $$$${b}=\alpha\pm\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi{z}_{\mathrm{1}} \wedge{c}=\alpha\mp\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi{z}_{\mathrm{2}} \wedge{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \in\mathbb{Z} \\ $$