Menu Close

find-a-better-approximation-for-the-integrals-1-0-1-e-x-2-dx-2-1-e-x-2-dx-




Question Number 37281 by abdo.msup.com last updated on 11/Jun/18
find a better approximation for the  integrals   1) ∫_0 ^1   e^(−x^2 ) dx  2) ∫_1 ^(+∞)  e^(−x^2 ) dx .
findabetterapproximationfortheintegrals1)01ex2dx2)1+ex2dx.
Commented by prof Abdo imad last updated on 18/Jun/18
we have  e^(−x^2 )    =Σ_(n=0) ^∞  (((−1)^n  x^(2n) )/(n!)) ⇒  ∫_0 ^1  e^(−x^2 ) dx = Σ_(n=0) ^∞  (((−1)^n )/(n!)) ∫_0 ^1  x^(2n) dx  =Σ_(n=0) ^∞    (((−1)^n )/(n!(2n+1))) let take 8terms we get  ∫_0 ^1  e^(−x^2 ) dx ∼ 1 −(1/3) + (1/(5.2!))  −(1/(7.3!)) +(1/(9.4!))  −(1/(11.5!))  +(1/(13.6!)) −(1/(15.7!)) +(1/(17.8!))  ⇒...  2) ∫_0 ^(+∞)  e^(−x^2 ) dx =((√π)/2) = ∫_0 ^1  e^(−x^2 ) dx +∫_1 ^(+∞)  e^(−x^2 ) dx  ⇒ ∫_1 ^(+∞)   e^(−x^2 ) dx =((√π)/2) −∫_0 ^1  e^(−x^2 ) dx and we use  approximate value from Q1...
wehaveex2=n=0(1)nx2nn!01ex2dx=n=0(1)nn!01x2ndx=n=0(1)nn!(2n+1)lettake8termsweget01ex2dx113+15.2!17.3!+19.4!111.5!+113.6!115.7!+117.8!2)0+ex2dx=π2=01ex2dx+1+ex2dx1+ex2dx=π201ex2dxandweuseapproximatevaluefromQ1

Leave a Reply

Your email address will not be published. Required fields are marked *