Menu Close

Find-a-closed-form-a-R-and-a-0-a-0-x-4-1-x-2-1-a-4-x-4-dx-




Question Number 150034 by mathdanisur last updated on 08/Aug/21
Find a closed form:  a∈R  and  a≠0  Ω(a)=∫_( 0) ^( ∞) (x^4 /((1+x^2 )(1+a^4 x^4 ))) dx
Findaclosedform:aRanda0Ω(a)=0x4(1+x2)(1+a4x4)dx
Answered by mathmax by abdo last updated on 09/Aug/21
Ψ=∫_0 ^∞   (x^4 /((x^2  +1)(a^4 x^4  +1)))dx ⇒Ψ=_(ax=t)    ∫_0 ^∞   (t^4 /(a^4 ((t^2 /a^2 )+1)(t^4 +1)))(dt/a)  =(1/a^5 )∫_0 ^∞   ((a^2 t^4 )/((t^2  +a^2 )(t^4 +1)))dt =(1/a^3 )∫_0 ^∞   (t^4 /((t^2  +a^2 )(t^4  +1)))dt  (we suppose a>0  because Ω(−a)=Ω(a))  ⇒a^3  Ψ=(1/2)∫_(−∞) ^(+∞)  (t^4 /((t^2  +a^2 )(t^4  +1)))dt  let ϕ(z)=(z^4 /((z^2  +a^2 )(z^4  +1)))  on ϕ(z)=(z^4 /((z−ia)(z+ia)(z^2 −i)(z^2  +i)))  =(z^4 /((z−ia)(z+ia)(z−(√i))(z+(√i))(z−(√(−i)))(z+(√(−i)))))  =(z^4 /((z−ia)(z+ia)(z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{ Res(ϕ,ia)+Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,ia)=(((ia)^4 )/((2ia)((ia)^(4 ) +1)))=(a^4 /(2ia(1+a^4 )))  Res(ϕ,e^((iπ)/4) )=((−1)/((i+a^2 )(2e^((iπ)/4) )(2i))) =((−e^(−((iπ)/4)) )/(4i(a^2 +i)))  Res(ϕ,−e^(−((iπ)/4)) ) =((−1)/((−i+a^2 )(−2e^(−((iπ)/4)) )(−2i)))=((−e^((iπ)/4) )/(4i(−i+a^2 )))  =(e^((iπ)/4) /(4i(a^2 −i))).....be continued...
Ψ=0x4(x2+1)(a4x4+1)dxΨ=ax=t0t4a4(t2a2+1)(t4+1)dta=1a50a2t4(t2+a2)(t4+1)dt=1a30t4(t2+a2)(t4+1)dt(wesupposea>0becauseΩ(a)=Ω(a))a3Ψ=12+t4(t2+a2)(t4+1)dtletφ(z)=z4(z2+a2)(z4+1)onφ(z)=z4(zia)(z+ia)(z2i)(z2+i)=z4(zia)(z+ia)(zi)(z+i)(zi)(z+i)=z4(zia)(z+ia)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)+φ(z)dz=2iπ{Res(φ,ia)+Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,ia)=(ia)4(2ia)((ia)4+1)=a42ia(1+a4)Res(φ,eiπ4)=1(i+a2)(2eiπ4)(2i)=eiπ44i(a2+i)Res(φ,eiπ4)=1(i+a2)(2eiπ4)(2i)=eiπ44i(i+a2)=eiπ44i(a2i)..becontinued
Commented by mathdanisur last updated on 09/Aug/21
Thank you Ser
ThankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *