Menu Close

find-a-common-roots-from-the-two-quadratic-eq-24x-2-p-4-x-1-0-and-6x-2-11x-p-2-0-




Question Number 96189 by bemath last updated on 30/May/20
find a common roots from  the two quadratic eq  24x^2 +(p+4)x−1=0  and 6x^2 +11x+p+2=0
findacommonrootsfromthetwoquadraticeq24x2+(p+4)x1=0and6x2+11x+p+2=0
Answered by john santu last updated on 30/May/20
by Wildberger′s theorem  if two quadratic eq : x^2 +Ax+B=0  and x^2 +Cx+D=0 have a common  roots it′s ⇒ x = ((D−B)/(A−C))  (i)x^2 +(((p+4)/(24)))x−(1/(24)) = 0  (ii) x^2 +(((11)/6))x+(((p+2)/6))=0  so the common roots   is x = ((((p+2)/6)+(1/(24)))/((((p+4)/(24)))−((11)/6))) = ((4p+9)/(p+4−44))  x = ((4p+9)/(p−40))
byWildbergerstheoremiftwoquadraticeq:x2+Ax+B=0andx2+Cx+D=0haveacommonrootsitsx=DBAC(i)x2+(p+424)x124=0(ii)x2+(116)x+(p+26)=0sothecommonrootsisx=p+26+124(p+424)116=4p+9p+444x=4p+9p40
Commented by bemath last updated on 30/May/20
wow ... I just found out the theorem mister
Commented by mr W last updated on 30/May/20
only for certain values of p have both  equations a common root.
onlyforcertainvaluesofphavebothequationsacommonroot.
Commented by john santu last updated on 30/May/20
Yes, right
Answered by mr W last updated on 30/May/20
let′s say eqn. 1 has roots: α, β  eqn. 2 has roots: β, γ  α+β=−((p+4)/(24))  αβ=−(1/(24))  β+γ=−((11)/6)  βγ=((p+2)/6)  ⇒(((p+4)/(24))+β)β=(1/(24))   ...(i)  ⇒(((11)/6)+β)β=−((p+2)/6)   ...(ii)  from (ii):  ((p+4)/(24))=(1/(12))−(1/4)(((11)/6)+β)β  put this into (i):  6β^3 −13β^2 −2β+1=0  ⇒(3β+1)(2β^2 −5β+1)=0  ⇒3β+1=0 ⇒β=−(1/3)  ⇒2β^2 −5β+1=0 ⇒β=((5±(√(17)))/4)    i.e. the common root can be  −(1/3), ((5−(√(17)))/4), ((5+(√(17)))/4)    p=−2−6(((11)/6)+β)β  ⇒p=1  ⇒p=−((63−13(√(17)))/2)≈−4.7  ⇒p=−((63+13(√(17)))/2)≈−58.3
letssayeqn.1hasroots:α,βeqn.2hasroots:β,γα+β=p+424αβ=124β+γ=116βγ=p+26(p+424+β)β=124(i)(116+β)β=p+26(ii)from(ii):p+424=11214(116+β)βputthisinto(i):6β313β22β+1=0(3β+1)(2β25β+1)=03β+1=0β=132β25β+1=0β=5±174i.e.thecommonrootcanbe13,5174,5+174p=26(116+β)βp=1p=63131724.7p=63+1317258.3
Answered by 1549442205 last updated on 30/May/20
Denoting x_0  common root of two equations.Then   { (( 24x_0 ^2  +(p+4)x_0 −1=0(1))),((6x_0 ^2  +11x_0 +p+2=0 (2))) :}  ⇔ { ((24x_0 ^2  +(p+4)x_0 −1=0)),((24x_0 +44x_0 +4p+8=0)) :}  ⇒(p+4)x_0 −1=44x_0 +4p+8  ⇒(p−40)x_0 =4p+9⇒x_0 =((4p+9)/(p−40)).Replace into (2)  ⇒6(((4p+9)/(p−40)))^2 +11(((4p+9)/(p−40)))+p+2=0  ⇔6(16p^2 +72p+81)+11(4p^2 −151p−360)  +(p+2)(p^2 −80p+1600)=0⇔  140p^2 −1229p−3474+p^3 −78p^2 +1440p  +3200=0⇔p^3 +62p^2 +211p−274=0  ⇔(p−1)(p^2 +63p+274)=0  a/p=1⇒x_0 =((−1)/3)  b/p^2 +63p+274=0⇔p=((−63±13(√(17)))/2)  ⇒x_0 ∈{((5−(√(17)))/4);(((√(17))+5)/4)}  Thus,two given equations have three  common
Denotingx0commonrootoftwoequations.Then{24x02+(p+4)x01=0(1)6x02+11x0+p+2=0(2){24x02+(p+4)x01=024x0+44x0+4p+8=0(p+4)x01=44x0+4p+8(p40)x0=4p+9x0=4p+9p40.Replaceinto(2)6(4p+9p40)2+11(4p+9p40)+p+2=06(16p2+72p+81)+11(4p2151p360)+(p+2)(p280p+1600)=0140p21229p3474+p378p2+1440p+3200=0p3+62p2+211p274=0(p1)(p2+63p+274)=0a/p=1x0=13b/p2+63p+274=0p=63±13172x0{5174;17+54}Thus,twogivenequationshavethreecommon

Leave a Reply

Your email address will not be published. Required fields are marked *