Question Number 83989 by Rio Michael last updated on 08/Mar/20
$$\mathrm{find}\:\: \\ $$$$\mathrm{a}.\:\:\:\int\mathrm{cos}\:\mathrm{3}{x}\:\mathrm{cos}\:\mathrm{5}{x}\:{dx} \\ $$$$\mathrm{b}.\:\:\int{x}\mathrm{ln}\:\mathrm{2}{x}\:{dx} \\ $$
Commented by jagoll last updated on 08/Mar/20
$$\mathrm{a}.\:\int\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\mathrm{8x}+\mathrm{cos}\:\mathrm{2x}\right)\:\mathrm{dx}\:= \\ $$$$\frac{\mathrm{1}}{\mathrm{16}}\:\mathrm{sin}\:\mathrm{8x}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2x}\:+\:\mathrm{c} \\ $$
Commented by jagoll last updated on 08/Mar/20
$$\mathrm{b}.\:\mathrm{by}\:\mathrm{part}\: \\ $$$$\int\:\mathrm{x}\:\mathrm{ln}\left(\mathrm{2x}\right)\:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:\mathrm{ln}\left(\mathrm{2x}\right)−\int\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:\mathrm{dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:\mathrm{ln}\left(\mathrm{2x}\right)−\frac{\mathrm{1}}{\mathrm{2}}\int\:\mathrm{x}\:\mathrm{dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \:\mathrm{ln}\left(\mathrm{2x}\right)\:−\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{c} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{2}} \:\left(\:\mathrm{2}\:\mathrm{ln}\left(\mathrm{2x}\right)−\mathrm{1}\right)\:+\:\mathrm{c}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{2}} \:\mathrm{ln}\:\left(\frac{\mathrm{4x}^{\mathrm{2}} }{\mathrm{e}}\right)\:+\:\mathrm{c} \\ $$
Commented by Rio Michael last updated on 08/Mar/20
$${thanks}\:{sir} \\ $$