Menu Close

find-a-equivalent-of-A-n-0-n-1-1-x-n-n-dx-n-




Question Number 33340 by prof Abdo imad last updated on 14/Apr/18
find a equivalent of  A_n = ∫_0 ^n   (√(1 +(1−(x/n))^n ))  dx (n→∞)
findaequivalentofAn=0n1+(1xn)ndx(n)
Commented by prof Abdo imad last updated on 25/Apr/18
we know that (1+u)^α  =1+αu +((α(α−1))/2) α^2  +o(α^3 )  (1−(x/n))^n  = 1−x+ ((n(n−1))/2) (x^2 /n^2 ) +o( (x^3 /n^3 )) ⇒  1+(1−(x/n))^n  ∼  2  −x+ ((n(n−1)x^2 )/(2n^2 )) (n→+∞)and  (√(2−x +((n(n−1))/(2n^2 ))x^2 ))  =(√(2( 1−(x/2) +((n(n−1)x^2 )/(4n^2 ))))  ∼(√2)(1−(1/2)(  (x/2) −((n(n−1)x^2 )/(4n^2 ))))  =(√2)  −((√2)/4) x  +((√2)/8) ((n(n−1)x^2 )/n^2 )  ⇒  A_n   ∼  ∫_0 ^n ((√2) −((√2)/4) x  +((√2)/8) ((n(n−1)x^2 )/n^2 ))dx ⇒  A_n   ∼ n(√2) −((√2)/8) n^2   +((√2)/(24)) ((n(n−1)n^3 )/n^2 ) ⇒  A_n   ∼n(√2) −((√2)/8) n^2   +((√2)/(24)) n^2 (n−1)  (n→+∞)
weknowthat(1+u)α=1+αu+α(α1)2α2+o(α3)(1xn)n=1x+n(n1)2x2n2+o(x3n3)1+(1xn)n2x+n(n1)x22n2(n+)and2x+n(n1)2n2x2=2(1x2+n(n1)x24n22(112(x2n(n1)x24n2))=224x+28n(n1)x2n2An0n(224x+28n(n1)x2n2)dxAnn228n2+224n(n1)n3n2Ann228n2+224n2(n1)(n+)

Leave a Reply

Your email address will not be published. Required fields are marked *