Menu Close

find-a-integral-form-of-L-e-x-2-L-f-means-laplace-transform-of-f-




Question Number 26057 by abdo imad last updated on 18/Dec/17
find a integral form of  L(  e^(−x^2 )  )  L(f) means laplace transform of f .
findaintegralformofL(ex2)L(f)meanslaplacetransformoff.
Commented by abdo imad last updated on 21/Dec/17
we define L(f(x)) =∫_0 ^∞ f(t) e^(−xt) dt  with  x≥0 with ∫_0 ^∞ /f(t)/dt convergent  L(e^(−x^2 ) )  = ∫_0 ^∞  e^(−t^2 ) . e^(−xt)  dt =∫_0 ^∞  e^(−( t^2 +xt)) dt =∫_0 ^∞  e^(−(t^2 +2(x/2)t+ (x^2 /4) −(x^2 /4))) dt  = e^(x^2 /4)   ∫_0 ^∞   e^(−(t+(x/2))^2 ) dt   and by the changement  α =t+(x/2)  L( e^(−x^2 ) )  = e^(x^2 /4)    ∫_(x/2) ^∝   e^(−α^2 ) dα =  e^(x^2 /4)    (  ∫_(x/2) ^0  e^(−α^2 ) dα  + ∫_0 ^∝   e^(−α^2 ) dα  )  but  ∫_0 ^∝   e^(−α^2 ) dα=((√π)/2)      ⇒   L( e^(−x^2 ) )  =  e^(x^2 /4)    (   ((√π)/2)   −  ∫_0 ^(x/2)   e^(−α^2 )  dα   )
wedefineL(f(x))=0f(t)extdtwithx0with0/f(t)/dtconvergentL(ex2)=0et2.extdt=0e(t2+xt)dt=0e(t2+2x2t+x24x24)dt=ex240e(t+x2)2dtandbythechangementα=t+x2L(ex2)=ex24x2eα2dα=ex24(x20eα2dα+0eα2dα)but0eα2dα=π2L(ex2)=ex24(π20x2eα2dα)

Leave a Reply

Your email address will not be published. Required fields are marked *