Menu Close

find-a-maclaurine-series-solution-to-the-differential-equation-up-to-the-term-in-x-4-dy-dx-x-xy-if-y-1-when-x-0-




Question Number 88235 by Rio Michael last updated on 09/Apr/20
 find a maclaurine series solution to the differential equation  up to the term in x^4 .   (dy/dx) − x = xy   if  y = 1 when x = 0.
findamaclaurineseriessolutiontothedifferentialequationuptotheterminx4.dydxx=xyify=1whenx=0.
Commented by niroj last updated on 11/Apr/20
  (dy/dx)−x= xy   if y=1 when x=0.   by the help of linear diff..equ^n  will be..    (dy/dx) −x−xy=0    (dy/dx)−xy=x   P= −x  & Q= x    IF= e^(∫Pdx) = e^(−(x^2 /2))    y×IF= ∫IF ×Qdx +C    y.e^(−(x^2 /2)) = ∫ e^(−(x^2 /2)) .xdx+C     put x^2 =t           2xdx=dt             xdx=(dt/2)   y.e^(−(x^2 /2)) = ∫ e^(−(t/2)) .(dt/2)+C   y.e^(− (x^2 /2)) =(1/2) ∫e^(−(t/2)) dt+C   ye^(−(x^2 /2)) =  (1/2). (e^(−(t/2)) /(−(1/2)))+C   ye^(−(x^2 /2)) = −.e^(−(x^2 /2)) +C      ye^(−(x^2 /2)) +e^(− (x^2 /2)) =C    if y=1 and x=0      1.e^(−(0/2)) +e^((−0)/2) =C     C=1.1+1=2   ∴  ye^(−(x^2 /2)) +e^(−(x^2 /2)) =2         ((y+1)/e^(x^2 /2) )=2      y= 2e^(x^2 /2) −1 //.
dydxx=xyify=1whenx=0.bythehelpoflineardiff..equnwillbe..dydxxxy=0dydxxy=xP=x&Q=xIF=ePdx=ex22y×IF=IF×Qdx+Cy.ex22=ex22.xdx+Cputx2=t2xdx=dtxdx=dt2y.ex22=et2.dt2+Cy.ex22=12et2dt+Cyex22=12.et212+Cyex22=.ex22+Cyex22+ex22=Cify=1andx=01.e02+e02=CC=1.1+1=2yex22+ex22=2y+1ex22=2y=2ex221//.

Leave a Reply

Your email address will not be published. Required fields are marked *